These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

307 related articles for article (PubMed ID: 29428563)

  • 61. Direct 2D measurement of time-averaged forces and pressure amplitudes in acoustophoretic devices using optical trapping.
    Lakämper S; Lamprecht A; Schaap IA; Dual J
    Lab Chip; 2015 Jan; 15(1):290-300. PubMed ID: 25370872
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Acoustic streaming induced by ultrasonic flexural vibrations and associated enhancement of convective heat transfer.
    Loh BG; Hyun S; Ro PI; Kleinstreuer C
    J Acoust Soc Am; 2002 Feb; 111(2):875-83. PubMed ID: 11863189
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Theoretical and numerical calculations for the time-averaged acoustic force and torque acting on a rigid cylinder of arbitrary size in a low viscosity fluid.
    Wang J; Dual J
    J Acoust Soc Am; 2011 Jun; 129(6):3490-501. PubMed ID: 21682376
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Acoustic streaming in an ultrasonic air pump with three-dimensional finite-difference time-domain analysis and comparison to the measurement.
    Wada Y; Koyama D; Nakamura K
    Ultrasonics; 2014 Dec; 54(8):2119-25. PubMed ID: 25001051
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Acoustofluidics 21: ultrasound-enhanced immunoassays and particle sensors.
    Wiklund M; Radel S; Hawkes JJ
    Lab Chip; 2013 Jan; 13(1):25-39. PubMed ID: 23138938
    [TBL] [Abstract][Full Text] [Related]  

  • 66. The use of ultrasonic standing waves to enhance optical particle sizing equipment.
    Holwill IL
    Ultrasonics; 2000 Mar; 38(1-8):650-3. PubMed ID: 10829745
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Transition from Boundary-Driven to Bulk-Driven Acoustic Streaming Due to Nonlinear Thermoviscous Effects at High Acoustic Energy Densities.
    Joergensen JH; Qiu W; Bruus H
    Phys Rev Lett; 2023 Jan; 130(4):044001. PubMed ID: 36763435
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Acoustofluidics 7: The acoustic radiation force on small particles.
    Bruus H
    Lab Chip; 2012 Mar; 12(6):1014-21. PubMed ID: 22349937
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Acoustic fields and microfluidic patterning around embedded micro-structures subject to surface acoustic waves.
    Collins DJ; O'Rorke R; Neild A; Han J; Ai Y
    Soft Matter; 2019 Nov; 15(43):8691-8705. PubMed ID: 31657435
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Experimental and numerical studies on standing surface acoustic wave microfluidics.
    Mao Z; Xie Y; Guo F; Ren L; Huang PH; Chen Y; Rufo J; Costanzo F; Huang TJ
    Lab Chip; 2016 Feb; 16(3):515-24. PubMed ID: 26698361
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Modeling fast acoustic streaming: Steady-state and transient flow solutions.
    Orosco J; Friend J
    Phys Rev E; 2022 Oct; 106(4-2):045101. PubMed ID: 36397528
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Acoustic and streaming velocity components in a resonant waveguide at high acoustic levels.
    Daru V; Reyt I; Bailliet H; Weisman C; Baltean-Carlès D
    J Acoust Soc Am; 2017 Jan; 141(1):563. PubMed ID: 28147596
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Acoustofluidics 1: Governing equations in microfluidics.
    Bruus H
    Lab Chip; 2011 Nov; 11(22):3742-51. PubMed ID: 22011885
    [TBL] [Abstract][Full Text] [Related]  

  • 74. A Numerical Investigation of the Mixing Performance in a Y-Junction Microchannel Induced by Acoustic Streaming.
    Endaylalu SA; Tien WH
    Micromachines (Basel); 2022 Feb; 13(2):. PubMed ID: 35208462
    [TBL] [Abstract][Full Text] [Related]  

  • 75. On the acoustically induced fluid flow in particle separation systems employing standing surface acoustic waves - Part II.
    Sachs S; Cierpka C; König J
    Lab Chip; 2022 May; 22(10):2028-2040. PubMed ID: 35485185
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Redshift of acoustic waves in acoustic streaming.
    Sato M; Matsuo T; Fujii T
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Jul; 68(1 Pt 2):016301. PubMed ID: 12935240
    [TBL] [Abstract][Full Text] [Related]  

  • 77. A finite element model for simulating acoustic streaming in cystic breast lesions with experimental validation.
    Nightingale KR; Trahey GE
    IEEE Trans Ultrason Ferroelectr Freq Control; 2000; 47(1):201-14. PubMed ID: 18238532
    [TBL] [Abstract][Full Text] [Related]  

  • 78. 3D numerical simulation of acoustophoretic motion induced by boundary-driven acoustic streaming in standing surface acoustic wave microfluidics.
    Namnabat MS; Moghimi Zand M; Houshfar E
    Sci Rep; 2021 Jun; 11(1):13326. PubMed ID: 34172758
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Stability of acoustic streaming flows in plane channels.
    Chu AK
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Oct; 68(4 Pt 2):046305. PubMed ID: 14683042
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Directed assembly of nanoparticles into continuous microstructures by standing surface acoustic waves.
    Sazan H; Piperno S; Layani M; Magdassi S; Shpaisman H
    J Colloid Interface Sci; 2019 Feb; 536():701-709. PubMed ID: 30408690
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.