These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
194 related articles for article (PubMed ID: 29428702)
1. Micromechanics of brain white matter tissue: A fiber-reinforced hyperelastic model using embedded element technique. Yousefsani SA; Shamloo A; Farahmand F J Mech Behav Biomed Mater; 2018 Apr; 80():194-202. PubMed ID: 29428702 [TBL] [Abstract][Full Text] [Related]
2. A Three-Dimensional Statistical Volume Element for Histology Informed Micromechanical Modeling of Brain White Matter. Hoursan H; Farahmand F; Ahmadian MT Ann Biomed Eng; 2020 Apr; 48(4):1337-1353. PubMed ID: 31965358 [TBL] [Abstract][Full Text] [Related]
3. A three-dimensional micromechanical model of brain white matter with histology-informed probabilistic distribution of axonal fibers. Yousefsani SA; Farahmand F; Shamloo A J Mech Behav Biomed Mater; 2018 Dec; 88():288-295. PubMed ID: 30196184 [TBL] [Abstract][Full Text] [Related]
4. Bidirectional hyperelastic characterization of brain white matter tissue. Yousefsani SA; Karimi MZV Biomech Model Mechanobiol; 2023 Apr; 22(2):495-513. PubMed ID: 36550243 [TBL] [Abstract][Full Text] [Related]
5. A micromechanical hyperelastic modeling of brain white matter under large deformation. Karami G; Grundman N; Abolfathi N; Naik A; Ziejewski M J Mech Behav Biomed Mater; 2009 Jul; 2(3):243-54. PubMed ID: 19627829 [TBL] [Abstract][Full Text] [Related]
6. Nonlinear mechanics of soft composites: hyperelastic characterization of white matter tissue components. Yousefsani SA; Shamloo A; Farahmand F Biomech Model Mechanobiol; 2020 Jun; 19(3):1143-1153. PubMed ID: 31853724 [TBL] [Abstract][Full Text] [Related]
7. An anisotropic hyperelastic constitutive model of brain white matter in biaxial tension and structural-mechanical relationships. Labus KM; Puttlitz CM J Mech Behav Biomed Mater; 2016 Sep; 62():195-208. PubMed ID: 27214689 [TBL] [Abstract][Full Text] [Related]
8. Histology-informed multiscale modeling of human brain white matter. Saeidi S; Kainz MP; Dalbosco M; Terzano M; Holzapfel GA Sci Rep; 2023 Nov; 13(1):19641. PubMed ID: 37949949 [TBL] [Abstract][Full Text] [Related]
9. Visco-hyperelastic characterization of human brain white matter micro-level constituents in different strain rates. Ramzanpour M; Hosseini-Farid M; McLean J; Ziejewski M; Karami G Med Biol Eng Comput; 2020 Sep; 58(9):2107-2118. PubMed ID: 32671675 [TBL] [Abstract][Full Text] [Related]
10. Homogenization of heterogeneous brain tissue under quasi-static loading: a visco-hyperelastic model of a 3D RVE. Kazempour M; Baniassadi M; Shahsavari H; Remond Y; Baghani M Biomech Model Mechanobiol; 2019 Aug; 18(4):969-981. PubMed ID: 30762151 [TBL] [Abstract][Full Text] [Related]
11. Effect of axonal fiber architecture on mechanical heterogeneity of the white matter-a statistical micromechanical model. Hoursan H; Farahmand F; Ahmadian MT Comput Methods Biomech Biomed Engin; 2022 Jan; 25(1):27-39. PubMed ID: 33998911 [TBL] [Abstract][Full Text] [Related]
12. An Ogden hyperelastic 3D micromechanical model to depict Poynting effect in brain white matter. Agarwal M; Pelegri AA Heliyon; 2024 Feb; 10(3):e25379. PubMed ID: 38371981 [TBL] [Abstract][Full Text] [Related]
13. Oligodendrocyte tethering effect on hyperelastic 3D response of axons in white matter. Agarwal M; Pasupathy P; Pelegri AA J Mech Behav Biomed Mater; 2022 Oct; 134():105394. PubMed ID: 35952442 [TBL] [Abstract][Full Text] [Related]
14. Modeling the damage-induced softening behavior of brain white matter using a coupled hyperelasticty-damage model. He G; Xia B; Feng Y; Chen Y; Fan L; Zhang D J Mech Behav Biomed Mater; 2023 May; 141():105753. PubMed ID: 36898357 [TBL] [Abstract][Full Text] [Related]
15. Harmonic viscoelastic response of 3D histology-informed white matter model. Wu X; Georgiadis JG; Pelegri AA Mol Cell Neurosci; 2022 Dec; 123():103782. PubMed ID: 36154874 [TBL] [Abstract][Full Text] [Related]
16. Characterizing white matter tissue in large strain via asymmetric indentation and inverse finite element modeling. Feng Y; Lee CH; Sun L; Ji S; Zhao X J Mech Behav Biomed Mater; 2017 Jan; 65():490-501. PubMed ID: 27665084 [TBL] [Abstract][Full Text] [Related]
17. A computational study of invariant I Feng Y; Qiu S; Xia X; Ji S; Lee CH J Biomech; 2017 May; 57():146-151. PubMed ID: 28433390 [TBL] [Abstract][Full Text] [Related]
18. Mechanical characterization of human brain tissue. Budday S; Sommer G; Birkl C; Langkammer C; Haybaeck J; Kohnert J; Bauer M; Paulsen F; Steinmann P; Kuhl E; Holzapfel GA Acta Biomater; 2017 Jan; 48():319-340. PubMed ID: 27989920 [TBL] [Abstract][Full Text] [Related]
19. Structural Anisotropy vs. Mechanical Anisotropy: The Contribution of Axonal Fibers to the Material Properties of Brain White Matter. Eskandari F; Shafieian M; Aghdam MM; Laksari K Ann Biomed Eng; 2021 Mar; 49(3):991-999. PubMed ID: 33025318 [TBL] [Abstract][Full Text] [Related]
20. Determining constitutive behavior of the brain tissue using digital image correlation and finite element modeling. Felfelian AM; Baradaran Najar A; Jafari Nedoushan R; Salehi H Biomech Model Mechanobiol; 2019 Dec; 18(6):1927-1945. PubMed ID: 31197510 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]