These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 29428702)

  • 21. A micromechanical procedure for viscoelastic characterization of the axons and ECM of the brainstem.
    Javid S; Rezaei A; Karami G
    J Mech Behav Biomed Mater; 2014 Feb; 30():290-9. PubMed ID: 24361933
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Identification of the visco-hyperelastic properties of brain white matter based on the combination of inverse method and experiment.
    Liu Q; Liu J; Guan F; Han X; Cao L; Shan K
    Med Biol Eng Comput; 2019 May; 57(5):1109-1120. PubMed ID: 30635831
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Viscoelastic parameter identification of human brain tissue.
    Budday S; Sommer G; Holzapfel GA; Steinmann P; Kuhl E
    J Mech Behav Biomed Mater; 2017 Oct; 74():463-476. PubMed ID: 28756040
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Rheological characterization of human brain tissue.
    Budday S; Sommer G; Haybaeck J; Steinmann P; Holzapfel GA; Kuhl E
    Acta Biomater; 2017 Sep; 60():315-329. PubMed ID: 28658600
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A novel micro-to-macro structural approach for mechanical characterization of adipose tissue extracellular matrix.
    Seyfi B; Fatouraee N; Samani A
    J Mech Behav Biomed Mater; 2018 Jan; 77():140-147. PubMed ID: 28910711
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Embedded axonal fiber tracts improve finite element model predictions of traumatic brain injury.
    Hajiaghamemar M; Wu T; Panzer MB; Margulies SS
    Biomech Model Mechanobiol; 2020 Jun; 19(3):1109-1130. PubMed ID: 31811417
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Explicit Modeling of White Matter Axonal Fiber Tracts in a Finite Element Brain Model.
    Wu T; Alshareef A; Giudice JS; Panzer MB
    Ann Biomed Eng; 2019 Sep; 47(9):1908-1922. PubMed ID: 30877404
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Measurements of mechanical anisotropy in brain tissue and implications for transversely isotropic material models of white matter.
    Feng Y; Okamoto RJ; Namani R; Genin GM; Bayly PV
    J Mech Behav Biomed Mater; 2013 Jul; 23():117-32. PubMed ID: 23680651
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Hyperelastic modeling of the human brain tissue: Effects of no-slip boundary condition and compressibility on the uniaxial deformation.
    Voyiadjis GZ; Samadi-Dooki A
    J Mech Behav Biomed Mater; 2018 Jul; 83():63-78. PubMed ID: 29684774
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A micromechanical procedure for modelling the anisotropic mechanical properties of brain white matter.
    Abolfathi N; Naik A; Sotudeh Chafi M; Karami G; Ziejewski M
    Comput Methods Biomech Biomed Engin; 2009 Jun; 12(3):249-62. PubMed ID: 18846460
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Relationship between structural modeling and hyperelastic material behavior: application to CNS white matter.
    Meaney DF
    Biomech Model Mechanobiol; 2003 Apr; 1(4):279-93. PubMed ID: 14586696
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Origins of brain tissue elasticity under multiple loading modes by analyzing the microstructure-based models.
    Wang P; Du Z; Shi H; Liu J; Liu Z; Zhuang Z
    Biomech Model Mechanobiol; 2023 Aug; 22(4):1239-1252. PubMed ID: 37184689
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Hyperelastic compressive mechanical properties of the subcalcaneal soft tissue: An inverse finite element analysis.
    Isvilanonda V; Iaquinto JM; Pai S; Mackenzie-Helnwein P; Ledoux WR
    J Biomech; 2016 May; 49(7):1186-1191. PubMed ID: 27040391
    [TBL] [Abstract][Full Text] [Related]  

  • 34. On multiscale boundary conditions in the computational homogenization of an RVE of tendon fascicles.
    Carniel TA; Klahr B; Fancello EA
    J Mech Behav Biomed Mater; 2019 Mar; 91():131-138. PubMed ID: 30579110
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The Transverse Isotropy of Spinal Cord White Matter Under Dynamic Load.
    Jannesar S; Nadler B; Sparrey CJ
    J Biomech Eng; 2016 Sep; 138(9):. PubMed ID: 27428053
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Towards microstructure-informed material models for human brain tissue.
    Budday S; Sarem M; Starck L; Sommer G; Pfefferle J; Phunchago N; Kuhl E; Paulsen F; Steinmann P; Shastri VP; Holzapfel GA
    Acta Biomater; 2020 Mar; 104():53-65. PubMed ID: 31887455
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A biphasic hyperelastic model for the analysis of fluid and mass transport in brain tissue.
    García JJ; Smith JH
    Ann Biomed Eng; 2009 Feb; 37(2):375-86. PubMed ID: 19058008
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Computation of the effective mechanical response of biological networks accounting for large configuration changes.
    El Nady K; Ganghoffer JF
    J Mech Behav Biomed Mater; 2016 May; 58():28-44. PubMed ID: 26541071
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Micromechanics and constitutive modeling of connective soft tissues.
    Fallah A; Ahmadian MT; Firozbakhsh K; Aghdam MM
    J Mech Behav Biomed Mater; 2016 Jul; 60():157-176. PubMed ID: 26807767
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Anisotropic finite element models for brain injury prediction: the sensitivity of axonal strain to white matter tract inter-subject variability.
    Giordano C; Zappalà S; Kleiven S
    Biomech Model Mechanobiol; 2017 Aug; 16(4):1269-1293. PubMed ID: 28233136
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.