These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 29428702)

  • 41. Compressive mechanical characterization of non-human primate spinal cord white matter.
    Jannesar S; Allen M; Mills S; Gibbons A; Bresnahan JC; Salegio EA; Sparrey CJ
    Acta Biomater; 2018 Jul; 74():260-269. PubMed ID: 29729417
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Embedded finite element modeling of the mechanics of brain axonal fiber tracts under head impact conditions.
    He G; Fan L; Horstemeyer MF
    Comput Biol Med; 2024 Oct; 181():109063. PubMed ID: 39178807
    [TBL] [Abstract][Full Text] [Related]  

  • 43. How to implement user-defined fiber-reinforced hyperelastic materials in finite element software.
    Fehervary H; Maes L; Vastmans J; Kloosterman G; Famaey N
    J Mech Behav Biomed Mater; 2020 Oct; 110():103737. PubMed ID: 32771879
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Generalization of exponential based hyperelastic to hyper-viscoelastic model for investigation of mechanical behavior of rate dependent materials.
    Narooei K; Arman M
    J Mech Behav Biomed Mater; 2018 Mar; 79():104-113. PubMed ID: 29289929
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Micromechanical modeling of rate-dependent behavior of Connective tissues.
    Fallah A; Ahmadian MT; Firozbakhsh K; Aghdam MM
    J Theor Biol; 2017 Mar; 416():119-128. PubMed ID: 28069450
    [TBL] [Abstract][Full Text] [Related]  

  • 46. A polynomial hyperelastic model for the mixture of fat and glandular tissue in female breast.
    Calvo-Gallego JL; Martínez-Reina J; Domínguez J
    Int J Numer Method Biomed Eng; 2015 Sep; 31(9):e02723. PubMed ID: 25950862
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Tissue loading and microstructure regulate the deformation of embedded nerve fibres: predictions from single-scale and multiscale simulations.
    Zarei V; Zhang S; Winkelstein BA; Barocas VH
    J R Soc Interface; 2017 Oct; 14(135):. PubMed ID: 28978743
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Mechanical responses of the periodontal ligament based on an exponential hyperelastic model: a combined experimental and finite element method.
    Huang H; Tang W; Yan B; Wu B; Cao D
    Comput Methods Biomech Biomed Engin; 2016; 19(2):188-98. PubMed ID: 25648914
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Stochastic hyperelastic constitutive laws and identification procedure for soft biological tissues with intrinsic variability.
    Staber B; Guilleminot J
    J Mech Behav Biomed Mater; 2017 Jan; 65():743-752. PubMed ID: 27764747
    [TBL] [Abstract][Full Text] [Related]  

  • 50. A new method for determining the ogden parameters of soft materials using indentation experiments.
    Li L; Masen M
    J Mech Behav Biomed Mater; 2024 Jul; 155():106574. PubMed ID: 38761525
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Fitted hyperelastic parameters for Human brain tissue from reported tension, compression, and shear tests.
    Moran R; Smith JH; García JJ
    J Biomech; 2014 Nov; 47(15):3762-6. PubMed ID: 25446271
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Modeling of microstructural kinematics during simple elongation of central nervous system tissue.
    Bain AC; Shreiber DI; Meaney DF
    J Biomech Eng; 2003 Dec; 125(6):798-804. PubMed ID: 14986404
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Micromechanical analysis of brain's diffuse axonal injury.
    Mohammadipour A; Alemi A
    J Biomech; 2017 Dec; 65():61-74. PubMed ID: 29074287
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Noninvasive determination of ligament strain with deformable image registration.
    Phatak NS; Sun Q; Kim SE; Parker DL; Sanders RK; Veress AI; Ellis BJ; Weiss JA
    Ann Biomed Eng; 2007 Jul; 35(7):1175-87. PubMed ID: 17394084
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Finite strain parametric HFGMC micromechanics of soft tissues.
    Breiman U; Meshi I; Aboudi J; Haj-Ali R
    Biomech Model Mechanobiol; 2020 Dec; 19(6):2443-2453. PubMed ID: 32519115
    [TBL] [Abstract][Full Text] [Related]  

  • 56. On the accuracy and fitting of transversely isotropic material models.
    Feng Y; Okamoto RJ; Genin GM; Bayly PV
    J Mech Behav Biomed Mater; 2016 Aug; 61():554-566. PubMed ID: 27136091
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Measurement of the hyperelastic properties of ex vivo brain tissue slices.
    Kaster T; Sack I; Samani A
    J Biomech; 2011 Apr; 44(6):1158-63. PubMed ID: 21329927
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Tension Strain-Softening and Compression Strain-Stiffening Behavior of Brain White Matter.
    Eskandari F; Shafieian M; Aghdam MM; Laksari K
    Ann Biomed Eng; 2021 Jan; 49(1):276-286. PubMed ID: 32494967
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Embedded Finite Elements for Modeling Axonal Injury.
    Garimella HT; Menghani RR; Gerber JI; Sridhar S; Kraft RH
    Ann Biomed Eng; 2019 Sep; 47(9):1889-1907. PubMed ID: 30519759
    [TBL] [Abstract][Full Text] [Related]  

  • 60. An axonal strain injury criterion for traumatic brain injury.
    Wright RM; Ramesh KT
    Biomech Model Mechanobiol; 2012 Jan; 11(1-2):245-60. PubMed ID: 21476072
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.