BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 29428820)

  • 1. Structural and biochemical characterization of the plant type III polyketide synthases of the liverwort Marchantia paleacea.
    Yu HN; Liu XY; Gao S; Sun B; Zheng HB; Ji M; Cheng AX; Lou HX
    Plant Physiol Biochem; 2018 Apr; 125():95-105. PubMed ID: 29428820
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Functional characterization of a chalcone synthase from the liverwort Plagiochasma appendiculatum.
    Yu HN; Wang L; Sun B; Gao S; Cheng AX; Lou HX
    Plant Cell Rep; 2015 Feb; 34(2):233-45. PubMed ID: 25404490
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An aldol switch discovered in stilbene synthases mediates cyclization specificity of type III polyketide synthases.
    Austin MB; Bowman ME; Ferrer JL; Schröder J; Noel JP
    Chem Biol; 2004 Sep; 11(9):1179-94. PubMed ID: 15380179
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structural control of polyketide formation in plant-specific polyketide synthases.
    Jez JM; Austin MB; Ferrer J; Bowman ME; Schröder J; Noel JP
    Chem Biol; 2000 Dec; 7(12):919-30. PubMed ID: 11137815
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Engineered biosynthesis of plant polyketides: structure-based and precursor-directed approach.
    Abe I
    Top Curr Chem; 2010; 297():45-66. PubMed ID: 21495256
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structure of the Cannabis sativa olivetol-producing enzyme reveals cyclization plasticity in type III polyketide synthases.
    Kearsey LJ; Prandi N; Karuppiah V; Yan C; Leys D; Toogood H; Takano E; Scrutton NS
    FEBS J; 2020 Apr; 287(8):1511-1524. PubMed ID: 31605668
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Site-directed mutagenesis of benzalacetone synthase. The role of the Phe215 in plant type III polyketide synthases.
    Abe I; Sano Y; Takahashi Y; Noguchi H
    J Biol Chem; 2003 Jul; 278(27):25218-26. PubMed ID: 12724310
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dissection of malonyl-coenzyme A decarboxylation from polyketide formation in the reaction mechanism of a plant polyketide synthase.
    Jez JM; Ferrer JL; Bowman ME; Dixon RA; Noel JP
    Biochemistry; 2000 Feb; 39(5):890-902. PubMed ID: 10653632
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Starter substrate specificities of wild-type and mutant polyketide synthases from Rutaceae.
    Lukacin R; Schreiner S; Silber K; Matern U
    Phytochemistry; 2005 Feb; 66(3):277-84. PubMed ID: 15680984
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Heterologous gene expression and functional analysis of a type III polyketide synthase from Aspergillus niger NRRL 328.
    Kirimura K; Watanabe S; Kobayashi K
    Biochem Biophys Res Commun; 2016 May; 473(4):1106-1110. PubMed ID: 27060547
    [TBL] [Abstract][Full Text] [Related]  

  • 11. How structural subtleties lead to molecular diversity for the type III polyketide synthases.
    Morita H; Wong CP; Abe I
    J Biol Chem; 2019 Oct; 294(41):15121-15136. PubMed ID: 31471316
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biosynthesis of biphenyls and benzophenones--evolution of benzoic acid-specific type III polyketide synthases in plants.
    Beerhues L; Liu B
    Phytochemistry; 2009; 70(15-16):1719-27. PubMed ID: 19699497
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cloning and characterization of a type III polyketide synthase from Aspergillus niger.
    Li J; Luo Y; Lee JK; Zhao H
    Bioorg Med Chem Lett; 2011 Oct; 21(20):6085-9. PubMed ID: 21903388
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ectopic expression and functional characterization of type III polyketide synthase mutants from Emblica officinalis Gaertn.
    Aiswarya G; Mallika V; Mur LA; Soniya EV
    Plant Cell Rep; 2016 Oct; 35(10):2077-90. PubMed ID: 27406087
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Advances in structure-function relation of plant type Ⅲ polyketide synthases by site-directed mutagenesis].
    Li X; Chen M; Chai T; Wang H
    Sheng Wu Gong Cheng Xue Bao; 2018 Apr; 34(4):473-488. PubMed ID: 29701022
    [TBL] [Abstract][Full Text] [Related]  

  • 16. 2-Alkylquinolone alkaloid biosynthesis in the medicinal plant
    Matsui T; Kodama T; Mori T; Tadakoshi T; Noguchi H; Abe I; Morita H
    J Biol Chem; 2017 Jun; 292(22):9117-9135. PubMed ID: 28411241
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A unified mechanism for plant polyketide biosynthesis derived from in silico modeling.
    Healy EF; Cervantes L; Nabona B; Williams J
    Biochem Biophys Res Commun; 2018 Mar; 497(4):1123-1128. PubMed ID: 29496450
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Functional characterization and expression of GASCL1 and GASCL2, two anther-specific chalcone synthase like enzymes from Gerbera hybrida.
    Kontturi J; Osama R; Deng X; Bashandy H; Albert VA; Teeri TH
    Phytochemistry; 2017 Feb; 134():38-45. PubMed ID: 27884449
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Crystal structure of a bacterial type III polyketide synthase and enzymatic control of reactive polyketide intermediates.
    Austin MB; Izumikawa M; Bowman ME; Udwary DW; Ferrer JL; Moore BS; Noel JP
    J Biol Chem; 2004 Oct; 279(43):45162-74. PubMed ID: 15265863
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structure-guided programming of polyketide chain-length determination in chalcone synthase.
    Jez JM; Bowman ME; Noel JP
    Biochemistry; 2001 Dec; 40(49):14829-38. PubMed ID: 11732902
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.