These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 29428855)

  • 1. Immobilization of heavy metals in ceramsite produced from sewage sludge biochar.
    Li J; Yu G; Xie S; Pan L; Li C; You F; Wang Y
    Sci Total Environ; 2018 Jul; 628-629():131-140. PubMed ID: 29428855
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Speciation and Ecological Risk Assessment of Heavy Metal(loid)s in the Municipal Sewage Sludge of China].
    Geng YM; Zhang CB; Zhang Y; Huang DD; Yan SX; Sun TF; Cheng L; Wang J; Mao YX
    Huan Jing Ke Xue; 2021 Oct; 42(10):4834-4843. PubMed ID: 34581126
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Immobilization of heavy metals in sewage sludge by using subcritical water technology.
    Shi W; Liu C; Ding D; Lei Z; Yang Y; Feng C; Zhang Z
    Bioresour Technol; 2013 Jun; 137():18-24. PubMed ID: 23570779
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Migration and risk assessment of heavy metals in sewage sludge during hydrothermal treatment combined with pyrolysis.
    Wang X; Li C; Zhang B; Lin J; Chi Q; Wang Y
    Bioresour Technol; 2016 Dec; 221():560-567. PubMed ID: 27686724
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Stabilization of heavy metals in ceramsite made with sewage sludge.
    Xu GR; Zou JL; Li GB
    J Hazard Mater; 2008 Mar; 152(1):56-61. PubMed ID: 17692459
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Experimental Investigation into the Effect of Pyrolysis on Chemical Forms of Heavy Metals in Sewage Sludge Biochar (SSB), with Brief Ecological Risk Assessment.
    Li B; Ding S; Fan H; Ren Y
    Materials (Basel); 2021 Jan; 14(2):. PubMed ID: 33477642
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Co-pyrolysis of sewage sludge as additive with phytoremediation residue on the fate of heavy metals and the carbon sequestration potential of derived biochar.
    He T; Zhang M; Jin B
    Chemosphere; 2023 Feb; 314():137646. PubMed ID: 36581119
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Investigation of the speciation and environmental risk of heavy metals in biochar produced from textile sludge waste by pyrolysis at different temperatures.
    Yadav A; Yadav P; Bojjagani S; Srivastava JK; Raj A
    Chemosphere; 2024 Jul; 360():142454. PubMed ID: 38810801
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Stabilization of heavy metals in sludge ceramsite.
    Xu GR; Zou JL; Li GB
    Water Res; 2010 May; 44(9):2930-8. PubMed ID: 20219229
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparative study on the mobility and speciation of heavy metals in ashes from co-combustion of sewage sludge/dredged sludge and rice husk.
    Wang T; Xue Y; Zhou M; Yuan Y; Zhao S; Tan G; Zhou X; Geng J; Wu S; Hou H
    Chemosphere; 2017 Feb; 169():162-170. PubMed ID: 27875717
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The experimental optimization and comprehensive environmental risk assessment of heavy metals during the enhancement of sewage sludge dewaterability with ethanol and Fe(Ⅲ)-rice husk.
    Chen L; Xiong Q; Li S; Li H; Chen F; Zhao S; Ye F; Hou H; Zhou M
    J Environ Manage; 2020 Nov; 273():111122. PubMed ID: 32738745
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Migration and Transformation of Heavy Metals in Sewage Sludge during Hydrothermal Carbonization Combined with Combustion.
    Liu M; Duan Y; Bikane K; Zhao L
    Biomed Res Int; 2018; 2018():1913848. PubMed ID: 30050921
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ciprofloxacin adsorption by biochar derived from co-pyrolysis of sewage sludge and bamboo waste.
    Li J; Yu G; Pan L; Li C; You F; Wang Y
    Environ Sci Pollut Res Int; 2020 Jun; 27(18):22806-22817. PubMed ID: 32319068
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The transformation behaviors of heavy metals and dewaterability of sewage sludge during the dual conditioning with Fe
    Xiong Q; Zhou M; Liu M; Jiang S; Hou H
    Chemosphere; 2018 Oct; 208():93-100. PubMed ID: 29860149
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Characteristics of speciation and evaluation of ecological risk of heavy metals in sewage sludge of Guangzhou].
    Guo PR; Lei YQ; Cai DC; Zhang T; Wu R; Pan JC
    Huan Jing Ke Xue; 2014 Feb; 35(2):684-91. PubMed ID: 24812965
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of electromagnetic induction on migration and speciation of heavy metals in drying sewage sludge: Mechanistic insights.
    Wang T; Huang S; Fu T; Li J; Zhou X; Xue Y; Hou H
    Waste Manag; 2020 May; 109():192-201. PubMed ID: 32408102
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ecological risk assessment of sewage sludge from municipal wastewater treatment plants: a case study.
    Gusiatin ZM; Kulikowska D; Klik BK; Hajdukiewicz K
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2018; 53(13):1167-1176. PubMed ID: 30596324
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Immobilization of heavy metals in biochar derived from co-pyrolysis of sewage sludge and calcium sulfate.
    Liu L; Huang L; Huang R; Lin H; Wang D
    J Hazard Mater; 2021 Feb; 403():123648. PubMed ID: 32835990
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Fate of Heavy Metals and Risk Assessment of Heavy Metal in Pyrolysis Coupling with Acid Washing Treatment for Sewage Sludge.
    Li Z; Yu D; Liu X; Wang Y
    Toxics; 2023 May; 11(5):. PubMed ID: 37235261
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Co-pyrolysis of sewage sludge and organic fractions of municipal solid waste: Synergistic effects on biochar properties and the environmental risk of heavy metals.
    Wang X; Chang VW; Li Z; Chen Z; Wang Y
    J Hazard Mater; 2021 Jun; 412():125200. PubMed ID: 33517061
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.