BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

339 related articles for article (PubMed ID: 29428902)

  • 1. Recent advance on genome editing for therapy of β-hemoglobinopathies.
    Liu JW; Hong T; Qin X; Liang YM; Zhang P
    Yi Chuan; 2018 Feb; 40(2):95-103. PubMed ID: 29428902
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Customizing the genome as therapy for the β-hemoglobinopathies.
    Canver MC; Orkin SH
    Blood; 2016 May; 127(21):2536-45. PubMed ID: 27053533
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Genome editing strategies for fetal hemoglobin induction in beta-hemoglobinopathies.
    Demirci S; Leonard A; Tisdale JF
    Hum Mol Genet; 2020 Sep; 29(R1):R100-R106. PubMed ID: 32406490
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Genome editing approaches to β-hemoglobinopathies.
    Brusson M; Miccio A
    Prog Mol Biol Transl Sci; 2021; 182():153-183. PubMed ID: 34175041
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Lentiviral and genome-editing strategies for the treatment of β-hemoglobinopathies.
    Magrin E; Miccio A; Cavazzana M
    Blood; 2019 Oct; 134(15):1203-1213. PubMed ID: 31467062
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Wake-up Sleepy Gene: Reactivating Fetal Globin for β-Hemoglobinopathies.
    Wienert B; Martyn GE; Funnell APW; Quinlan KGR; Crossley M
    Trends Genet; 2018 Dec; 34(12):927-940. PubMed ID: 30287096
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Universal Gene Correction Approaches for β-hemoglobinopathies Using CRISPR-Cas9 and Adeno-Associated Virus Serotype 6 Donor Templates.
    Lamsfus-Calle A; Daniel-Moreno A; Ureña-Bailén G; Rottenberger J; Raju J; Epting T; Marciano S; Heumos L; Baskaran P; S Antony J; Handgretinger R; Mezger M
    CRISPR J; 2021 Apr; 4(2):207-222. PubMed ID: 33876951
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Precision Editing as a Therapeutic Approach for β-Hemoglobinopathies.
    Paschoudi K; Yannaki E; Psatha N
    Int J Mol Sci; 2023 May; 24(11):. PubMed ID: 37298481
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Manipulation of Developmental Gamma-Globin Gene Expression: an Approach for Healing Hemoglobinopathies.
    Venkatesan V; Srinivasan S; Babu P; Thangavel S
    Mol Cell Biol; 2020 Dec; 41(1):. PubMed ID: 33077498
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In vivo base editing by a single i.v. vector injection for treatment of hemoglobinopathies.
    Li C; Georgakopoulou A; Newby GA; Everette KA; Nizamis E; Paschoudi K; Vlachaki E; Gil S; Anderson AK; Koob T; Huang L; Wang H; Kiem HP; Liu DR; Yannaki E; Lieber A
    JCI Insight; 2022 Oct; 7(19):. PubMed ID: 36006707
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Gene Therapy for β-Hemoglobinopathies.
    Cavazzana M; Antoniani C; Miccio A
    Mol Ther; 2017 May; 25(5):1142-1154. PubMed ID: 28377044
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Editing outside the body: Ex vivo gene-modification for β-hemoglobinopathy cellular therapy.
    Rosanwo TO; Bauer DE
    Mol Ther; 2021 Nov; 29(11):3163-3178. PubMed ID: 34628053
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification of novel HPFH-like mutations by CRISPR base editing that elevate the expression of fetal hemoglobin.
    Ravi NS; Wienert B; Wyman SK; Bell HW; George A; Mahalingam G; Vu JT; Prasad K; Bandlamudi BP; Devaraju N; Rajendiran V; Syedbasha N; Pai AA; Nakamura Y; Kurita R; Narayanasamy M; Balasubramanian P; Thangavel S; Marepally S; Velayudhan SR; Srivastava A; DeWitt MA; Crossley M; Corn JE; Mohankumar KM
    Elife; 2022 Feb; 11():. PubMed ID: 35147495
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Gene Therapy for Beta-Hemoglobinopathies: Milestones, New Therapies and Challenges.
    Ghiaccio V; Chappell M; Rivella S; Breda L
    Mol Diagn Ther; 2019 Apr; 23(2):173-186. PubMed ID: 30701409
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A New Era for Hemoglobinopathies: More Than One Curative Option.
    Psatha N; Papayanni PG; Yannaki E
    Curr Gene Ther; 2017; 17(5):364-378. PubMed ID: 29357790
    [TBL] [Abstract][Full Text] [Related]  

  • 16. CRISPR/Cas9-based multiplex genome editing of BCL11A and HBG efficiently induces fetal hemoglobin expression.
    Han Y; Tan X; Jin T; Zhao S; Hu L; Zhang W; Kurita R; Nakamura Y; Liu J; Li D; Zhang Z; Fang X; Huang S
    Eur J Pharmacol; 2022 Mar; 918():174788. PubMed ID: 35093321
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Gene Therapy for Hemoglobinopathies.
    Cavazzana M; Mavilio F
    Hum Gene Ther; 2018 Oct; 29(10):1106-1113. PubMed ID: 30200783
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Gene Therapy and Genome Editing.
    Boulad F; Mansilla-Soto J; Cabriolu A; Rivière I; Sadelain M
    Hematol Oncol Clin North Am; 2018 Apr; 32(2):329-342. PubMed ID: 29458735
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Impact of epigenetic mechanisms on therapeutic approaches of hemoglobinopathies.
    Costa D; Capuano M; Sommese L; Napoli C
    Blood Cells Mol Dis; 2015 Aug; 55(2):95-100. PubMed ID: 26142322
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Genome-based therapeutic interventions for β-type hemoglobinopathies.
    Karamperis K; Tsoumpeli MT; Kounelis F; Koromina M; Mitropoulou C; Moutinho C; Patrinos GP
    Hum Genomics; 2021 Jun; 15(1):32. PubMed ID: 34090531
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.