These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
254 related articles for article (PubMed ID: 29429081)
1. A Static Microfluidic Device for Investigating the Chemotaxis Response to Stable, Non-linear Gradients. Sule N; Penarete-Acosta D; Englert DL; Jayaraman A Methods Mol Biol; 2018; 1729():47-59. PubMed ID: 29429081 [TBL] [Abstract][Full Text] [Related]
2. A three-channel microfluidic device for generating static linear gradients and its application to the quantitative analysis of bacterial chemotaxis. Diao J; Young L; Kim S; Fogarty EA; Heilman SM; Zhou P; Shuler ML; Wu M; DeLisa MP Lab Chip; 2006 Mar; 6(3):381-8. PubMed ID: 16511621 [TBL] [Abstract][Full Text] [Related]
3. A microfluidic device for quantifying bacterial chemotaxis in stable concentration gradients. Englert DL; Manson MD; Jayaraman A J Vis Exp; 2010 Apr; (38):. PubMed ID: 20404797 [TBL] [Abstract][Full Text] [Related]
4. Investigation of bacterial chemotaxis in flow-based microfluidic devices. Englert DL; Manson MD; Jayaraman A Nat Protoc; 2010 May; 5(5):864-72. PubMed ID: 20431532 [TBL] [Abstract][Full Text] [Related]
5. Flow-based microfluidic device for quantifying bacterial chemotaxis in stable, competing gradients. Englert DL; Manson MD; Jayaraman A Appl Environ Microbiol; 2009 Jul; 75(13):4557-64. PubMed ID: 19411425 [TBL] [Abstract][Full Text] [Related]
6. A radial microfluidic platform for higher throughput chemotaxis studies with individual gradient control. Wu J; Kumar-Kanojia A; Hombach-Klonisch S; Klonisch T; Lin F Lab Chip; 2018 Dec; 18(24):3855-3864. PubMed ID: 30427358 [TBL] [Abstract][Full Text] [Related]
7. Microfluidic monitoring of Pseudomonas aeruginosa chemotaxis under the continuous chemical gradient. Jeong HH; Lee SH; Kim JM; Kim HE; Kim YG; Yoo JY; Chang WS; Lee CS Biosens Bioelectron; 2010 Oct; 26(2):351-6. PubMed ID: 20810268 [TBL] [Abstract][Full Text] [Related]
8. Bacterial chemotaxis on SlipChip. Shen C; Xu P; Huang Z; Cai D; Liu SJ; Du W Lab Chip; 2014 Aug; 14(16):3074-80. PubMed ID: 24968180 [TBL] [Abstract][Full Text] [Related]
9. Quantitative analysis of Caenorhabditis elegans chemotaxis using a microfluidic device. Hu L; Ye J; Tan H; Ge A; Tang L; Feng X; Du W; Liu BF Anal Chim Acta; 2015 Aug; 887():155-162. PubMed ID: 26320797 [TBL] [Abstract][Full Text] [Related]
11. Generation of Gradients on a Microfluidic Device: Toward a High-Throughput Investigation of Spermatozoa Chemotaxis. Zhang Y; Xiao RR; Yin T; Zou W; Tang Y; Ding J; Yang J PLoS One; 2015; 10(11):e0142555. PubMed ID: 26555941 [TBL] [Abstract][Full Text] [Related]
12. Microfluidic device for analyzing preferential chemotaxis and chemoreceptor sensitivity of bacterial cells toward carbon sources. Kim M; Kim SH; Lee SK; Kim T Analyst; 2011 Aug; 136(16):3238-43. PubMed ID: 21716994 [TBL] [Abstract][Full Text] [Related]
13. Study of Chemotaxis and Cell-Cell Interactions in Cancer with Microfluidic Devices. Sai J; Rogers M; Hockemeyer K; Wikswo JP; Richmond A Methods Enzymol; 2016; 570():19-45. PubMed ID: 26921940 [TBL] [Abstract][Full Text] [Related]
14. A hydrogel-based microfluidic device for the studies of directed cell migration. Cheng SY; Heilman S; Wasserman M; Archer S; Shuler ML; Wu M Lab Chip; 2007 Jun; 7(6):763-9. PubMed ID: 17538719 [TBL] [Abstract][Full Text] [Related]
15. A parallel diffusion-based microfluidic device for bacterial chemotaxis analysis. Si G; Yang W; Bi S; Luo C; Ouyang Q Lab Chip; 2012 Apr; 12(7):1389-94. PubMed ID: 22361931 [TBL] [Abstract][Full Text] [Related]
16. Microfluidic system for measuring neutrophil migratory responses to fast switches of chemical gradients. Irimia D; Liu SY; Tharp WG; Samadani A; Toner M; Poznansky MC Lab Chip; 2006 Feb; 6(2):191-8. PubMed ID: 16450027 [TBL] [Abstract][Full Text] [Related]
17. Pump-less static microfluidic device for analysis of chemotaxis of Pseudomonas aeruginosa using wetting and capillary action. Jeong HH; Lee SH; Lee CS Biosens Bioelectron; 2013 Sep; 47():278-84. PubMed ID: 23584390 [TBL] [Abstract][Full Text] [Related]
18. A mathematical model for Escherichia coli chemotaxis to competing stimuli. Middlebrooks SA; Zhao X; Ford RM; Cummings PT Biotechnol Bioeng; 2021 Dec; 118(12):4678-4686. PubMed ID: 34463958 [TBL] [Abstract][Full Text] [Related]
19. Bacterial chemotaxis in linear and nonlinear steady microfluidic gradients. Ahmed T; Shimizu TS; Stocker R Nano Lett; 2010 Sep; 10(9):3379-85. PubMed ID: 20669946 [TBL] [Abstract][Full Text] [Related]
20. Bacterial chemotaxis transverse to axial flow in a microfluidic channel. Lanning LM; Ford RM; Long T Biotechnol Bioeng; 2008 Jul; 100(4):653-63. PubMed ID: 18306417 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]