These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

254 related articles for article (PubMed ID: 29429081)

  • 21. Quantitative analysis of single bacterial chemotaxis using a linear concentration gradient microchannel.
    Jeon H; Lee Y; Jin S; Koo S; Lee CS; Yoo JY
    Biomed Microdevices; 2009 Oct; 11(5):1135-43. PubMed ID: 19548088
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Microfluidic techniques for the analysis of bacterial chemotaxis.
    Englert DL; Jayaraman A; Manson MD
    Methods Mol Biol; 2009; 571():1-23. PubMed ID: 19763956
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Microfluidic devices for neutrophil chemotaxis studies.
    Zhao W; Zhao H; Li M; Huang C
    J Transl Med; 2020 Apr; 18(1):168. PubMed ID: 32293474
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Generation of dynamic temporal and spatial concentration gradients using microfluidic devices.
    Lin F; Saadi W; Rhee SW; Wang SJ; Mittal S; Jeon NL
    Lab Chip; 2004 Jun; 4(3):164-7. PubMed ID: 15159771
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Generation of stable concentration gradients in 2D and 3D environments using a microfluidic ladder chamber.
    Saadi W; Rhee SW; Lin F; Vahidi B; Chung BG; Jeon NL
    Biomed Microdevices; 2007 Oct; 9(5):627-35. PubMed ID: 17530414
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Biological applications of microfluidic gradient devices.
    Kim S; Kim HJ; Jeon NL
    Integr Biol (Camb); 2010 Nov; 2(11-12):584-603. PubMed ID: 20957276
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A hybrid microfluidic-vacuum device for direct interfacing with conventional cell culture methods.
    Chung BG; Park JW; Hu JS; Huang C; Monuki ES; Jeon NL
    BMC Biotechnol; 2007 Sep; 7():60. PubMed ID: 17883868
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Microfluidics for bacterial chemotaxis.
    Ahmed T; Shimizu TS; Stocker R
    Integr Biol (Camb); 2010 Nov; 2(11-12):604-29. PubMed ID: 20967322
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A sensitive, versatile microfluidic assay for bacterial chemotaxis.
    Mao H; Cremer PS; Manson MD
    Proc Natl Acad Sci U S A; 2003 Apr; 100(9):5449-54. PubMed ID: 12704234
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A sensitive chemotaxis assay using a novel microfluidic device.
    Zhang C; Jang S; Amadi OC; Shimizu K; Lee RT; Mitchell RN
    Biomed Res Int; 2013; 2013():373569. PubMed ID: 24151597
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A robust diffusion-based gradient generator for dynamic cell assays.
    Atencia J; Cooksey GA; Locascio LE
    Lab Chip; 2012 Jan; 12(2):309-16. PubMed ID: 22113489
    [TBL] [Abstract][Full Text] [Related]  

  • 32. E. coli DH5α cell response to a sudden change in microfluidic chemical environment.
    Murugesan N; Panda T; Das SK
    Annu Int Conf IEEE Eng Med Biol Soc; 2015; 2015():3213-6. PubMed ID: 26736976
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A parallel-gradient microfluidic chamber for quantitative analysis of breast cancer cell chemotaxis.
    Saadi W; Wang SJ; Lin F; Jeon NL
    Biomed Microdevices; 2006 Jun; 8(2):109-18. PubMed ID: 16688570
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Effect of gold nanoparticles on thermal gradient generation and thermotaxis of E. coli cells in microfluidic device.
    Murugesan N; Panda T; Das SK
    Biomed Microdevices; 2016 Aug; 18(4):53. PubMed ID: 27246690
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A tuneable microfluidic system for long duration chemotaxis experiments in a 3D collagen matrix.
    Aizel K; Clark AG; Simon A; Geraldo S; Funfak A; Vargas P; Bibette J; Vignjevic DM; Bremond N
    Lab Chip; 2017 Nov; 17(22):3851-3861. PubMed ID: 29022983
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Bacterial chemotaxis in static gradients quantified in a biopolymer membrane-integrated microfluidic platform.
    Hu P; Ly KL; Pham LPH; Pottash AE; Sheridan K; Wu HC; Tsao CY; Quan D; Bentley WE; Rubloff GW; Sintim HO; Luo X
    Lab Chip; 2022 Aug; 22(17):3203-3216. PubMed ID: 35856590
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Diffusion-based and long-range concentration gradients of multiple chemicals for bacterial chemotaxis assays.
    Kim M; Kim T
    Anal Chem; 2010 Nov; 82(22):9401-9. PubMed ID: 20979359
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Escherichia coli chemotaxis to competing stimuli in a microfluidic device with a constant gradient.
    Zhao X; Ford RM
    Biotechnol Bioeng; 2022 Sep; 119(9):2564-2573. PubMed ID: 35716141
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Mapping of Enzyme Kinetics on a Microfluidic Device.
    Rho HS; Hanke AT; Ottens M; Gardeniers H
    PLoS One; 2016; 11(4):e0153437. PubMed ID: 27082243
    [TBL] [Abstract][Full Text] [Related]  

  • 40. [Design, simulation and application of multichannel microfluidic chip for cell migration].
    Li H; Yang X; Wu X; Li Z; Hong C; Liu Y; Zhu L; Yang K
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2022 Feb; 39(1):128-138. PubMed ID: 35231974
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.