These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

548 related articles for article (PubMed ID: 29429341)

  • 1. Reduced Thermal Transport in the Graphene/MoS
    Srinivasan S; Balasubramanian G
    Langmuir; 2018 Mar; 34(10):3326-3335. PubMed ID: 29429341
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A first principle study of the structural, electronic, and temperature-dependent thermodynamic properties of graphene/MoS
    Hossain MT; Rahman MA
    J Mol Model; 2020 Feb; 26(2):40. PubMed ID: 32008139
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Lateral and flexural phonon thermal transport in graphene and stanene bilayers.
    Hong Y; Zhu C; Ju M; Zhang J; Zeng XC
    Phys Chem Chem Phys; 2017 Mar; 19(9):6554-6562. PubMed ID: 28197566
    [TBL] [Abstract][Full Text] [Related]  

  • 4. van der Waals Graphene Kirigami Heterostructure for Strain-Controlled Thermal Transparency.
    Gao Y; Xu B
    ACS Nano; 2018 Nov; 12(11):11254-11262. PubMed ID: 30427663
    [TBL] [Abstract][Full Text] [Related]  

  • 5. First-principles calculations of thermal transport properties in MoS
    Ma JJ; Zheng JJ; Zhu XL; Liu PF; Li WD; Wang BT
    Phys Chem Chem Phys; 2019 May; 21(20):10442-10448. PubMed ID: 31066395
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Interfacial thermal conductance of a silicene/graphene bilayer heterostructure and the effect of hydrogenation.
    Liu B; Baimova JA; Reddy CD; Law AW; Dmitriev SV; Wu H; Zhou K
    ACS Appl Mater Interfaces; 2014 Oct; 6(20):18180-8. PubMed ID: 25308778
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Phonon Thermal Transport in Silicene/Graphene Heterobilayer Nanostructures: Effect of Interlayer Interactions.
    Zhou J; Li H; Tang HK; Shao L; Han K; Shen X
    ACS Omega; 2022 Feb; 7(7):5844-5852. PubMed ID: 35224345
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interface thermal conductance of van der Waals monolayers on amorphous substrates.
    Correa GC; Foss CJ; Aksamija Z
    Nanotechnology; 2017 Mar; 28(13):135402. PubMed ID: 28157087
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Excellent thermoelectric performance induced by interface effect in MoS
    Jia PZ; Zeng YJ; Wu D; Pan H; Cao XH; Zhou WX; Xie ZX; Zhang JX; Chen KQ
    J Phys Condens Matter; 2020 Jan; 32(5):055302. PubMed ID: 31600739
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Thermal transport of graphene-C
    Zhang G; Dong S; Wang X; Xin G
    Nanotechnology; 2023 Nov; 35(5):. PubMed ID: 37879323
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phonon thermal transport in a graphene/MoSe
    Hong Y; Ju MG; Zhang J; Zeng XC
    Phys Chem Chem Phys; 2018 Jan; 20(4):2637-2645. PubMed ID: 29319076
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Impact of Interlayer Rotation on Thermal Transport Across Graphene/Hexagonal Boron Nitride van der Waals Heterostructure.
    Ren W; Ouyang Y; Jiang P; Yu C; He J; Chen J
    Nano Lett; 2021 Mar; 21(6):2634-2641. PubMed ID: 33656896
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Molecular Dynamics Simulation on In-Plane Thermal Conductivity of Graphene/Hexagonal Boron Nitride van der Waals Heterostructures.
    Yang Y; Ma J; Yang J; Zhang Y
    ACS Appl Mater Interfaces; 2022 Oct; 14(40):45742-45751. PubMed ID: 36172714
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Thermal transport in MoS2/Graphene hybrid nanosheets.
    Zhang Z; Xie Y; Peng Q; Chen Y
    Nanotechnology; 2015 Sep; 26(37):375402. PubMed ID: 26313739
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Disparate strain response of the thermal transport properties of bilayer penta-graphene as compared to that of monolayer penta-graphene.
    Sun Z; Yuan K; Zhang X; Qin G; Gong X; Tang D
    Phys Chem Chem Phys; 2019 Jul; 21(28):15647-15655. PubMed ID: 31268444
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Atomic-Scale Surface Engineering for Giant Thermal Transport Enhancement Across 2D/3D van der Waals Interfaces.
    Wang Q; Zhang J; Xiong Y; Li S; Chernysh V; Liu X
    ACS Appl Mater Interfaces; 2023 Jan; 15(2):3377-3386. PubMed ID: 36608269
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In-plane and cross-plane thermal conductivities of molybdenum disulfide.
    Ding Z; Jiang JW; Pei QX; Zhang YW
    Nanotechnology; 2015 Feb; 26(6):065703. PubMed ID: 25597653
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Self-induced uniaxial strain in MoS2 monolayers with local van der Waals-stacked interlayer interactions.
    Zhang K; Hu S; Zhang Y; Zhang T; Zhou X; Sun Y; Li TX; Fan HJ; Shen G; Chen X; Dai N
    ACS Nano; 2015 Mar; 9(3):2704-10. PubMed ID: 25716291
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phonon Thermal Transport across Multilayer Graphene/Hexagonal Boron Nitride van der Waals Heterostructures.
    Wu X; Han Q
    ACS Appl Mater Interfaces; 2021 Jul; 13(27):32564-32578. PubMed ID: 34196535
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Thermal conductivity of van der Waals heterostructure of 2D GeS and SnS based on machine learning interatomic potential.
    Li W; Yang C
    J Phys Condens Matter; 2023 Sep; 35(50):. PubMed ID: 37669661
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 28.