These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 29429697)

  • 1. Ultrasonic waveform upshot on mass variation within single cavitation bubble: Investigation of physical and chemical transformations.
    Kerboua K; Hamdaoui O
    Ultrason Sonochem; 2018 Apr; 42():508-516. PubMed ID: 29429697
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Insights into numerical simulation of controlled ultrasonic waveforms driving single cavitation bubble activity.
    Kerboua K; Hamdaoui O
    Ultrason Sonochem; 2018 May; 43():237-247. PubMed ID: 29555281
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optimum bubble temperature for the sonochemical production of oxidants.
    Yasui K; Tuziuti T; Iida Y
    Ultrasonics; 2004 Apr; 42(1-9):579-84. PubMed ID: 15047350
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Influence of reactions heats on variation of radius, temperature, pressure and chemical species amounts within a single acoustic cavitation bubble.
    Kerboua K; Hamdaoui O
    Ultrason Sonochem; 2018 Mar; 41():449-457. PubMed ID: 29137774
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Study on characteristics of single cavitation bubble considering condensation and evaporation of kerosene steam under ultrasonic vibration honing.
    Ye L; Zhu X; Wang L; Guo C
    Ultrason Sonochem; 2018 Jan; 40(Pt A):988-994. PubMed ID: 28946511
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Numerical study on dual-frequency ultrasonic enhancing cavitation effect based on bubble dynamic evolution.
    Ye L; Zhu X; Liu Y
    Ultrason Sonochem; 2019 Dec; 59():104744. PubMed ID: 31473426
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Influence of liquid density variation on the bubble and gas dynamics of a single acoustic cavitation bubble.
    Nazari-Mahroo H; Pasandideh K; Navid HA; Sadighi-Bonabi R
    Ultrasonics; 2020 Mar; 102():106034. PubMed ID: 31670231
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Theoretical estimation of the temperature and pressure within collapsing acoustical bubbles.
    Merouani S; Hamdaoui O; Rezgui Y; Guemini M
    Ultrason Sonochem; 2014 Jan; 21(1):53-9. PubMed ID: 23769748
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sensitivity of free radicals production in acoustically driven bubble to the ultrasonic frequency and nature of dissolved gases.
    Merouani S; Hamdaoui O; Rezgui Y; Guemini M
    Ultrason Sonochem; 2015 Jan; 22():41-50. PubMed ID: 25112684
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bubble size distribution in acoustic droplet vaporization via dissolution using an ultrasound wide-beam method.
    Xu S; Zong Y; Li W; Zhang S; Wan M
    Ultrason Sonochem; 2014 May; 21(3):975-83. PubMed ID: 24360840
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A comprehensive numerical analysis of heat and mass transfer phenomenons during cavitation sono-process.
    Dehane A; Merouani S; Hamdaoui O; Alghyamah A
    Ultrason Sonochem; 2021 May; 73():105498. PubMed ID: 33706197
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A method for predicting the number of active bubbles in sonochemical reactors.
    Merouani S; Ferkous H; Hamdaoui O; Rezgui Y; Guemini M
    Ultrason Sonochem; 2015 Jan; 22():51-8. PubMed ID: 25127247
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Numerical investigation of the effect of dual frequency sonication on stable bubble dynamics.
    Kerboua K; Hamdaoui O
    Ultrason Sonochem; 2018 Dec; 49():325-332. PubMed ID: 30172464
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Computational study of state equation effect on single acoustic cavitation bubble's phenomenon.
    Kerboua K; Hamdaoui O
    Ultrason Sonochem; 2017 Sep; 38():174-188. PubMed ID: 28633817
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Production of O Radicals from Cavitation Bubbles under Ultrasound.
    Yasui K
    Molecules; 2022 Jul; 27(15):. PubMed ID: 35897962
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Theoretical model of ice nucleation induced by acoustic cavitation. Part 1: Pressure and temperature profiles around a single bubble.
    Cogné C; Labouret S; Peczalski R; Louisnard O; Baillon F; Espitalier F
    Ultrason Sonochem; 2016 Mar; 29():447-54. PubMed ID: 26044460
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Numerical estimation of ultrasonic production of hydrogen: Effect of ideal and real gas based models.
    Kerboua K; Hamdaoui O
    Ultrason Sonochem; 2018 Jan; 40(Pt A):194-200. PubMed ID: 28946414
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The range of ambient radius for an active bubble in sonoluminescence and sonochemical reactions.
    Yasui K; Tuziuti T; Lee J; Kozuka T; Towata A; Iida Y
    J Chem Phys; 2008 May; 128(18):184705. PubMed ID: 18532834
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of ultrasound frequency and acoustic amplitude on the size of sonochemically active bubbles - Theoretical study.
    Merouani S; Hamdaoui O; Rezgui Y; Guemini M
    Ultrason Sonochem; 2013 May; 20(3):815-9. PubMed ID: 23187064
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Harnessing cavitational effects for green process intensification.
    Wu Z; Tagliapietra S; Giraudo A; Martina K; Cravotto G
    Ultrason Sonochem; 2019 Apr; 52():530-546. PubMed ID: 30600212
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.