These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
211 related articles for article (PubMed ID: 29429889)
1. Comparison with the osteoconductivity and bone-bonding ability of the iodine supported titanium, titanium with porous oxide layer and the titanium alloy in the rabbit model. Taga T; Kabata T; Kajino Y; Inoue D; Ohmori T; Yamamoto T; Takagi T; Tsuchiya H J Orthop Sci; 2018 May; 23(3):585-591. PubMed ID: 29429889 [TBL] [Abstract][Full Text] [Related]
2. Biology of alkali- and heat-treated titanium implants. Nishiguchi S; Fujibayashi S; Kim HM; Kokubo T; Nakamura T J Biomed Mater Res A; 2003 Oct; 67(1):26-35. PubMed ID: 14517858 [TBL] [Abstract][Full Text] [Related]
3. Implant-delivered Alendronate Causes a Dose-dependent Response on Net Bone Formation Around Porous Titanium Implants in Canines. Pura JA; Bobyn JD; Tanzer M Clin Orthop Relat Res; 2016 May; 474(5):1224-33. PubMed ID: 26831478 [TBL] [Abstract][Full Text] [Related]
4. Selective laser melting of titanium alloy enables osseointegration of porous multi-rooted implants in a rabbit model. Peng W; Xu L; You J; Fang L; Zhang Q Biomed Eng Online; 2016 Jul; 15(1):85. PubMed ID: 27439427 [TBL] [Abstract][Full Text] [Related]
5. Enhanced osteoconductivity of micro-structured titanium implants (XiVE S CELLplus) by addition of surface calcium chemistry: a histomorphometric study in the rabbit femur. Park JW; Kim HK; Kim YJ; An CH; Hanawa T Clin Oral Implants Res; 2009 Jul; 20(7):684-90. PubMed ID: 19489932 [TBL] [Abstract][Full Text] [Related]
6. The influence of surface-blasting on the incorporation of titanium-alloy implants in a rabbit intramedullary model. Feighan JE; Goldberg VM; Davy D; Parr JA; Stevenson S J Bone Joint Surg Am; 1995 Sep; 77(9):1380-95. PubMed ID: 7673290 [TBL] [Abstract][Full Text] [Related]
7. Bone bonding strength of diamond-structured porous titanium-alloy implants manufactured using the electron beam-melting technique. Hara D; Nakashima Y; Sato T; Hirata M; Kanazawa M; Kohno Y; Yoshimoto K; Yoshihara Y; Nakamura A; Nakao Y; Iwamoto Y Mater Sci Eng C Mater Biol Appl; 2016 Feb; 59():1047-1052. PubMed ID: 26652463 [TBL] [Abstract][Full Text] [Related]
8. Bony integration of titanium implants with a novel bioactive calcium titanate (Ca4Ti3O10) surface treatment in a rabbit model. Haenle M; Lindner T; Ellenrieder M; Willfahrt M; Schell H; Mittelmeier W; Bader R J Biomed Mater Res A; 2012 Oct; 100(10):2710-6. PubMed ID: 22623353 [TBL] [Abstract][Full Text] [Related]
9. Effects of NSAIDs and hydroxyapatite coating on osseointegration. Salduz A; Dikici F; Kılıçoğlu ÖI; Balcı HI; Akgul T; Kürkçü M; Kurtoğlu C; Tözün R J Orthop Surg (Hong Kong); 2017 Jan; 25(1):2309499016684410. PubMed ID: 28139193 [TBL] [Abstract][Full Text] [Related]
10. Comparative analysis of osseointegration in various types of acetabular implant materials. Bondarenko S; Dedukh N; Filipenko V; Akonjom M; Badnaoui AA; Schwarzkopf R Hip Int; 2018 Nov; 28(6):622-628. PubMed ID: 29742946 [TBL] [Abstract][Full Text] [Related]
11. In vivo evaluation of bone-bonding ability of RGD-coated porous implant using layer-by-layer electrostatic self-assembly. Yang GL; He FM; Yang XF; Wang XX; Zhao SF J Biomed Mater Res A; 2009 Jul; 90(1):175-85. PubMed ID: 18491389 [TBL] [Abstract][Full Text] [Related]
12. The effect of polyelectrolyte multilayer coated titanium alloy surfaces on implant anchorage in rats. Zankovych S; Diefenbeck M; Bossert J; Mückley T; Schrader C; Schmidt J; Schubert H; Bischoff S; Faucon M; Finger U; Jandt KD Acta Biomater; 2013 Jan; 9(1):4926-34. PubMed ID: 22902814 [TBL] [Abstract][Full Text] [Related]
13. Effects of calcium ion implantation on osseointegration of surface-blasted titanium alloy femoral implants in a canine total hip arthroplasty model. Jinno T; Kirk SK; Morita S; Goldberg VM J Arthroplasty; 2004 Jan; 19(1):102-9. PubMed ID: 14716657 [TBL] [Abstract][Full Text] [Related]
14. Experimental evidence for interfacial biochemical bonding in osseointegrated titanium implants. Sul YT; Kwon DH; Kang BS; Oh SJ; Johansson C Clin Oral Implants Res; 2013 Aug; 24 Suppl A100():8-19. PubMed ID: 22093014 [TBL] [Abstract][Full Text] [Related]
15. Enhanced osseointegration of titanium implants with nanostructured surfaces: an experimental study in rabbits. Salou L; Hoornaert A; Louarn G; Layrolle P Acta Biomater; 2015 Jan; 11():494-502. PubMed ID: 25449926 [TBL] [Abstract][Full Text] [Related]
16. Intermittent administration of human parathyroid hormone (1-34) increases new bone formation on the interface of hydroxyapatitecoated titanium rods implanted into ovariectomized rat femora. Ohkawa Y; Tokunaga K; Endo N J Orthop Sci; 2008 Nov; 13(6):533-42. PubMed ID: 19089541 [TBL] [Abstract][Full Text] [Related]
17. Bone response to the multilayer BMP-2 gene coated porous titanium implant surface. Jiang QH; Liu L; Peel S; Yang GL; Zhao SF; He FM Clin Oral Implants Res; 2013 Aug; 24(8):853-61. PubMed ID: 22168601 [TBL] [Abstract][Full Text] [Related]
19. The bone response of oxidized bioactive and non-bioactive titanium implants. Sul YT; Johansson C; Byon E; Albrektsson T Biomaterials; 2005 Nov; 26(33):6720-30. PubMed ID: 15975649 [TBL] [Abstract][Full Text] [Related]
20. Performance of laser sintered Ti-6Al-4V implants with bone-inspired porosity and micro/nanoscale surface roughness in the rabbit femur. Cohen DJ; Cheng A; Sahingur K; Clohessy RM; Hopkins LB; Boyan BD; Schwartz Z Biomed Mater; 2017 Apr; 12(2):025021. PubMed ID: 28452335 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]