BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

454 related articles for article (PubMed ID: 29429925)

  • 1. A Metabolic Basis for Endothelial-to-Mesenchymal Transition.
    Xiong J; Kawagishi H; Yan Y; Liu J; Wells QS; Edmunds LR; Fergusson MM; Yu ZX; Rovira II; Brittain EL; Wolfgang MJ; Jurczak MJ; Fessel JP; Finkel T
    Mol Cell; 2018 Feb; 69(4):689-698.e7. PubMed ID: 29429925
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterization of L-aminocarnitine, an inhibitor of fatty acid oxidation.
    Chegary M; Te Brinke H; Doolaard M; Ijlst L; Wijburg FA; Wanders RJ; Houten SM
    Mol Genet Metab; 2008 Apr; 93(4):403-10. PubMed ID: 18077198
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Inborn Errors of Long-Chain Fatty Acid β-Oxidation Link Neural Stem Cell Self-Renewal to Autism.
    Xie Z; Jones A; Deeney JT; Hur SK; Bankaitis VA
    Cell Rep; 2016 Feb; 14(5):991-999. PubMed ID: 26832401
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sequestration of coenzyme A by the industrial surfactant, Toximul MP8. A possible role in the inhibition of fatty-acid beta-oxidation in a surfactant/influenza B virus mouse model for acute hepatic encephalopathy.
    Murphy MG; Crocker JF; Lee SH; Acott P; Her H
    Biochim Biophys Acta; 1997 Jul; 1361(1):103-13. PubMed ID: 9247094
    [TBL] [Abstract][Full Text] [Related]  

  • 5. PERK participates in cardiac valve development via fatty acid oxidation and endocardial-mesenchymal transformation.
    Shimizu T; Maruyama K; Kawamura T; Urade Y; Wada Y
    Sci Rep; 2020 Nov; 10(1):20094. PubMed ID: 33208886
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Short communication: high insulin concentrations inhibit fatty acid oxidation-related gene expression in calf hepatocytes cultured in vitro.
    Li P; Wu CC; Long M; Zhang Y; Li XB; He JB; Wang Z; Liu GW
    J Dairy Sci; 2013 Jun; 96(6):3840-4. PubMed ID: 23567053
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Involvement of the fatty acid oxidation complex in acetyl-CoA-dependent chain elongation of fatty acids in Escherichia coli.
    Nishimaki-Mogami T; Yamanaka H; Mizugaki M
    J Biochem; 1987 Aug; 102(2):427-32. PubMed ID: 3312186
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fatty acid oxidation complex from Escherichia coli.
    Binstock JF; Schulz H
    Methods Enzymol; 1981; 71 Pt C():403-11. PubMed ID: 7024730
    [No Abstract]   [Full Text] [Related]  

  • 9. MSC-induced lncRNA HCP5 drove fatty acid oxidation through miR-3619-5p/AMPK/PGC1α/CEBPB axis to promote stemness and chemo-resistance of gastric cancer.
    Wu H; Liu B; Chen Z; Li G; Zhang Z
    Cell Death Dis; 2020 Apr; 11(4):233. PubMed ID: 32300102
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Glutamate 139 of the large alpha-subunit is the catalytic base in the dehydration of both D- and L-3-hydroxyacyl-coenzyme A but not in the isomerization of delta 3, delta 2-enoyl-coenzyme A catalyzed by the multienzyme complex of fatty acid oxidation from Escherichia coli.
    Yang SY; He XY; Schulz H
    Biochemistry; 1995 May; 34(19):6441-7. PubMed ID: 7756275
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Activity and mRNA levels of enzymes involved in hepatic fatty acid synthesis and oxidation in mice fed conjugated linoleic acid.
    Takahashi Y; Kushiro M; Shinohara K; Ide T
    Biochim Biophys Acta; 2003 Apr; 1631(3):265-73. PubMed ID: 12668178
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evidence that the fadB gene of the fadAB operon of Escherichia coli encodes 3-hydroxyacyl-coenzyme A (CoA) epimerase, delta 3-cis-delta 2-trans-enoyl-CoA isomerase, and enoyl-CoA hydratase in addition to 3-hydroxyacyl-CoA dehydrogenase.
    Yang SY; Li JM; He XY; Cosloy SD; Schulz H
    J Bacteriol; 1988 Jun; 170(6):2543-8. PubMed ID: 3286611
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of long-chain monounsaturated and n-3 fatty acids on fatty acid oxidation and lipid composition in rats.
    Halvorsen B; Rustan AC; Madsen L; Reseland J; Berge RK; Sletnes P; Christiansen EN
    Ann Nutr Metab; 2001; 45(1):30-7. PubMed ID: 11244185
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Differentiation of long-chain fatty acid oxidation disorders using alternative precursors and acylcarnitine profiling in fibroblasts.
    Roe DS; Yang BZ; Vianey-Saban C; Struys E; Sweetman L; Roe CR
    Mol Genet Metab; 2006 Jan; 87(1):40-7. PubMed ID: 16297647
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Histidine-450 is the catalytic residue of L-3-hydroxyacyl coenzyme A dehydrogenase associated with the large alpha-subunit of the multienzyme complex of fatty acid oxidation from Escherichia coli.
    He XY; Yang SY
    Biochemistry; 1996 Jul; 35(29):9625-30. PubMed ID: 8755745
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Medium-chain fatty acids undergo elongation before beta-oxidation in fibroblasts.
    Jones PM; Butt Y; Messmer B; Boriak R; Bennett MJ
    Biochem Biophys Res Commun; 2006 Jul; 346(1):193-7. PubMed ID: 16750167
    [TBL] [Abstract][Full Text] [Related]  

  • 17. MicroRNA-155 functions as a negative regulator of RhoA signaling in TGF-β-induced endothelial to mesenchymal transition.
    Bijkerk R; de Bruin RG; van Solingen C; Duijs JM; Kobayashi K; van der Veer EP; ten Dijke P; Rabelink TJ; Goumans MJ; van Zonneveld AJ
    Microrna; 2012; 1(1):2-10. PubMed ID: 25048084
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Type 1 Interferons Induce Changes in Core Metabolism that Are Critical for Immune Function.
    Wu D; Sanin DE; Everts B; Chen Q; Qiu J; Buck MD; Patterson A; Smith AM; Chang CH; Liu Z; Artyomov MN; Pearce EL; Cella M; Pearce EJ
    Immunity; 2016 Jun; 44(6):1325-36. PubMed ID: 27332732
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Metabolic control of muscle mitochondrial function and fatty acid oxidation through SIRT1/PGC-1alpha.
    Gerhart-Hines Z; Rodgers JT; Bare O; Lerin C; Kim SH; Mostoslavsky R; Alt FW; Wu Z; Puigserver P
    EMBO J; 2007 Apr; 26(7):1913-23. PubMed ID: 17347648
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Emergent Coordination of the CHKB and CPT1B Genes in Eutherian Mammals: Implications for the Origin of Brown Adipose Tissue.
    Patel BV; Yao F; Howenstine A; Takenaka R; Hyatt JA; Sears KE; Shewchuk BM
    J Mol Biol; 2020 Nov; 432(23):6127-6145. PubMed ID: 33058877
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 23.