These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 29430066)

  • 1. The synthesis of lactone-bridged 1,3,5-triphenylbenzene derivatives as pi-expanded coumarin triskelions.
    Hintz HA; Sortedahl NJ; Meyer SM; Decato DA; Dahl BJ
    Tetrahedron Lett; 2017 Dec; 58(50):4703-4708. PubMed ID: 29430066
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Janus-Type AIE Fluorophores: Synthesis and Properties of π-Extended Coumarin-Bearing Triskelions.
    Ueda M; Kokubun M; Yanagi N; Yamamoto N; Mazaki Y
    Molecules; 2022 Nov; 27(21):. PubMed ID: 36364275
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of the π-bridge on the light absorption and emission in push-pull coumarins and on their supramolecular organization.
    González-Rodríguez E; Guzmán-Juárez B; Miranda-Olvera M; Carreón-Castro MDP; Maldonado-Domínguez M; Arcos-Ramos R; Farfán N; Santillan R
    Spectrochim Acta A Mol Biomol Spectrosc; 2022 Feb; 267(Pt 2):120520. PubMed ID: 34739896
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Synthesis of Azadioxa-Planar Triphenylboranes Bridged by Aryl- and Alkylimino Groups and Their Photophysical Properties.
    Kitamoto Y; Oda K; Kita H; Hattori T; Oi S
    J Org Chem; 2023 May; 88(9):5852-5860. PubMed ID: 37083363
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Extreme conformational constraints in pi-extended tetrathiafulvalenes: unusual topologies and redox behavior of doubly and triply bridged cyclophanes.
    Christensen CA; Batsanov AS; Bryce MR
    J Am Chem Soc; 2006 Aug; 128(32):10484-90. PubMed ID: 16895414
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synthesis and structural, electrochemical and photophysical studies of triferrocenyl-substituted 1,3,5-triphenylbenzene: a cyan-light emitting molecule showing aggregation-induced enhanced emission.
    Kasprzak A; Guńka PA; Kowalczyk A; Nowicka AM
    Dalton Trans; 2020 Nov; 49(42):14807-14814. PubMed ID: 33094773
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synthesis, crystal structures and photoluminescence of anthracen- and pyrene-based coumarin derivatives.
    Zhang H; Tong H; Zhao Y; Yu T; Zhang P; Li J; Fan D
    Spectrochim Acta A Mol Biomol Spectrosc; 2015 Nov; 150():316-20. PubMed ID: 26056982
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The synthesis and photophysical properties of tris-coumarins.
    Kielesiński Ł; Morawski OW; Sobolewski AL; Gryko DT
    Phys Chem Chem Phys; 2019 Apr; 21(16):8314-8325. PubMed ID: 30951072
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Vertically π-Expanded Coumarins: The Synthesis and Optical Properties.
    Nazir R; Stasyuk AJ; Gryko DT
    J Org Chem; 2016 Nov; 81(22):11104-11114. PubMed ID: 27788333
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Excited State Complexes of Coumarin Derivatives.
    Mukhtar A; Mansha A; Asim S; Shahzad A; Bibi S
    J Fluoresc; 2022 Jan; 32(1):1-17. PubMed ID: 34580794
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Helical stacking tuned by alkoxy side chains in pi-conjugated triphenylbenzene discotic derivatives.
    Bao C; Lu R; Jin M; Xue P; Tan C; Xu T; Liu G; Zhao Y
    Chemistry; 2006 Apr; 12(12):3287-94. PubMed ID: 16470770
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evaluation of coumarin derivatives as anti-fungal agents against soil-borne fungal pathogens.
    Brooker NL; Kuzimichev Y; Laas J; Pavlis R
    Commun Agric Appl Biol Sci; 2007; 72(4):785-93. PubMed ID: 18396811
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Recent Advances in the Synthesis of Coumarin Derivatives from Different Starting Materials.
    Lončarić M; Gašo-Sokač D; Jokić S; Molnar M
    Biomolecules; 2020 Jan; 10(1):. PubMed ID: 31963362
    [TBL] [Abstract][Full Text] [Related]  

  • 14. GLP-1 Targeted Novel 3-phenyl-7-hydroxy Substituted Coumarins Mitigate STZ-induced Pancreatic Damage and Improve Glucose Homeostasis in OGTT Method.
    Gupta MK; Srivastava R; Kumar S; Varshney KK; Singh H
    Protein Pept Lett; 2022; 29(11):979-992. PubMed ID: 36043778
    [TBL] [Abstract][Full Text] [Related]  

  • 15. π-Extension of the Tribenzotriquinacene Framework: Efficient Vinylene and Arylene Bay Bridging Based on a New C
    Wang HZ; Hung TY; Ip HW; Lee MK; Sun XQ; Kuck D; Chow HF
    Chemistry; 2023 Jun; 29(36):e202300793. PubMed ID: 36989413
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Design and synthesis of donor-acceptor pyrazabole derivatives for multiphoton absorption.
    Jadhav T; Maragani R; Misra R; Sreeramulu V; Rao DN; Mobin SM
    Dalton Trans; 2013 Apr; 42(13):4340-2. PubMed ID: 23396416
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Total synthesis of six 3,4-unsubstituted coumarins.
    Gao W; Li Q; Chen J; Wang Z; Hua C
    Molecules; 2013 Dec; 18(12):15613-23. PubMed ID: 24352017
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Planarized Phenyldithienylboranes: Effects of the Bridging Moieties and π-Extension on the Photophysical Properties and Lewis Acidity.
    Sakai M; Mori M; Hirai M; Ando N; Yamaguchi S
    Chemistry; 2022 Jul; 28(38):e202200728. PubMed ID: 35412698
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microwave-assisted synthesis of novel hetero[5]helicene-like molecules and coumarin derivatives.
    Lin W; Hu X; Song S; Cai Q; Wang Y; Shi D
    Org Biomol Chem; 2017 Sep; 15(37):7909-7916. PubMed ID: 28895604
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phenylene-Bridged Core-Modified Planar Aromatic Octaphyrin: Aromaticity, Photophysical and Anion Receptor Properties.
    Karthik G; Cha WY; Ghosh A; Kim T; Srinivasan A; Kim D; Chandrashekar TK
    Chem Asian J; 2016 May; 11(9):1447-53. PubMed ID: 26957207
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.