These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 29430340)

  • 1. Laccase/Mediator Systems: Their Reactivity toward Phenolic Lignin Structures.
    Hilgers R; Vincken JP; Gruppen H; Kabel MA
    ACS Sustain Chem Eng; 2018 Feb; 6(2):2037-2046. PubMed ID: 29430340
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparison of fungal laccases and redox mediators in oxidation of a nonphenolic lignin model compound.
    Li K; Xu F; Eriksson KE
    Appl Environ Microbiol; 1999 Jun; 65(6):2654-60. PubMed ID: 10347057
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Influence of mediators on laccase catalyzed radical formation in lignin.
    Munk L; Andersen ML; Meyer AS
    Enzyme Microb Technol; 2018 Sep; 116():48-56. PubMed ID: 29887016
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electrochemical analysis of the interactions of laccase mediators with lignin model compounds.
    Bourbonnais R; Leech D; Paice MG
    Biochim Biophys Acta; 1998 Mar; 1379(3):381-90. PubMed ID: 9545600
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Natural Syringyl Mediators Accelerate Laccase-Catalyzed β-O-4 Cleavage and Cα-Oxidation of a Guaiacyl Model Substrate via an Aggregation Mechanism.
    Chen X; Ouyang X; Li J; Zhao YL
    ACS Omega; 2021 Sep; 6(35):22578-22588. PubMed ID: 34514230
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Oxidation of non-phenolic substrates. An expanded role for laccase in lignin biodegradation.
    Bourbonnais R; Paice MG
    FEBS Lett; 1990 Jul; 267(1):99-102. PubMed ID: 2365094
    [TBL] [Abstract][Full Text] [Related]  

  • 7. On the mechanism of the laccase-mediator system in the oxidation of lignin.
    Crestini C; Jurasek L; Argyropoulos DS
    Chemistry; 2003 Nov; 9(21):5371-8. PubMed ID: 14613147
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The early oxidative biodegradation steps of residual kraft lignin models with laccase.
    Crestini C; Argyropoulos DS
    Bioorg Med Chem; 1998 Nov; 6(11):2161-9. PubMed ID: 9881106
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reactivities of various mediators and laccases with kraft pulp and lignin model compounds.
    Bourbonnais R; Paice MG; Freiermuth B; Bodie E; Borneman S
    Appl Environ Microbiol; 1997 Dec; 63(12):4627-32. PubMed ID: 16535747
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Aromatic ring cleavage of a non-phenolic beta-O-4 lignin model dimer by laccase of Trametes versicolor in the presence of 1-hydroxybenzotriazole.
    Kawai S; Nakagawa M; Ohashi H
    FEBS Lett; 1999 Mar; 446(2-3):355-8. PubMed ID: 10100873
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Oxidation of the erythro and threo forms of the phenolic lignin model compound 1-(4-hydroxy-3-methoxyphenyl)-2-(2-methoxyphenoxy)-1,3-propanediol by laccases and model oxidants.
    Bohlin C; Lundquist K; Jönsson LJ
    Bioorg Chem; 2009 Oct; 37(5):143-8. PubMed ID: 19646732
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electrochemical analysis of Catechol polymerization in presence of Trametes versicolor laccase and the mediator ABTS.
    Saha R; Mukhopadhyay M
    Enzyme Microb Technol; 2021 Dec; 152():109934. PubMed ID: 34688090
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Polymerization of guaiacol and a phenolic beta-O-4-substructure by Trametes hirsuta laccase in the presence of ABTS.
    Rittstieg K; Suurnäkki A; Suortti T; Kruus K; Guebitz GM; Buchert J
    Biotechnol Prog; 2003; 19(5):1505-9. PubMed ID: 14524712
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Degradation of anthracene by laccase of Trametes versicolor in the presence of different mediator compounds.
    Johannes C; Majcherczyk A; Hüttermann A
    Appl Microbiol Biotechnol; 1996 Oct; 46(3):313-7. PubMed ID: 8933845
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Changes in chemical structures of wheat straw auto-hydrolysis lignin by 3-hydroxyanthranilic acid as a laccase mediator.
    Feng N; Guo L; Ren H; Xie Y; Jiang Z; Ek M; Zhai H
    Int J Biol Macromol; 2019 Feb; 122():210-215. PubMed ID: 30365991
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Time-dependent electrochemical characteristics of a phenolic and non-phenolic compound in the presence of laccase/ABTS system.
    Saha R; Mukhopadhyay M
    PLoS One; 2022; 17(9):e0275338. PubMed ID: 36170267
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enzymatic depolymerization of industrial lignins by laccase-mediator systems in 1,4-dioxane/water.
    Dillies J; Vivien C; Chevalier M; Rulence A; Châtaigné G; Flahaut C; Senez V; Froidevaux R
    Biotechnol Appl Biochem; 2020 Sep; 67(5):774-782. PubMed ID: 31957059
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transformation of polycyclic aromatic hydrocarbons by laccase is strongly enhanced by phenolic compounds present in soil.
    Cañas AI; Alcalde M; Plou F; Martínez MJ; Martínez AT; Camarero S
    Environ Sci Technol; 2007 Apr; 41(8):2964-71. PubMed ID: 17533865
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Graphene enhanced transformation of lignin in laccase-ABTS system by accelerating electron transfer.
    Pan Y; Ma H; Huang L; Huang J; Liu Y; Huang Z; Li W; Yang J
    Enzyme Microb Technol; 2018 Dec; 119():17-23. PubMed ID: 30243382
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Degradation of nonphenolic lignin by the laccase/1-hydroxybenzotriazole system.
    Srebotnik E; Hammel KE
    J Biotechnol; 2000 Aug; 81(2-3):179-88. PubMed ID: 10989177
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.