BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

226 related articles for article (PubMed ID: 29430379)

  • 1. Genomic insights of aromatic hydrocarbon degrading
    Rajkumari J; Paikhomba Singha L; Pandey P
    3 Biotech; 2018 Feb; 8(2):118. PubMed ID: 29430379
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rhizoremediation prospects of Polyaromatic hydrocarbon degrading rhizobacteria, that facilitate glutathione and glutathione-S-transferase mediated stress response, and enhance growth of rice plants in pyrene contaminated soil.
    Singha LP; Sinha N; Pandey P
    Ecotoxicol Environ Saf; 2018 Nov; 164():579-588. PubMed ID: 30149357
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Rhizodegradation of Pyrene by a Non-pathogenic
    Rajkumari J; Choudhury Y; Bhattacharjee K; Pandey P
    Front Microbiol; 2021; 12():593023. PubMed ID: 33708179
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Draft Genome Sequence of Klebsiella pneumoniae AWD5.
    Rajkumari J; Singha LP; Pandey P
    Genome Announc; 2017 Feb; 5(5):. PubMed ID: 28153891
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Insights into Genomic Evolution and the Potential Genetic Basis of Klebsiella variicola subsp.
    Wang D; Sun L; Yin Z; Cui S; Huang W; Xie Z
    Microbiol Spectr; 2022 Dec; 10(6):e0084622. PubMed ID: 36377943
    [TBL] [Abstract][Full Text] [Related]  

  • 6.
    Wu T; Xu J; Xie W; Yao Z; Yang H; Sun C; Li X
    Front Microbiol; 2018; 9():1087. PubMed ID: 29887849
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization of cadmium-resistant Klebsiella pneumoniae MCC 3091 promoted rice seedling growth by alleviating phytotoxicity of cadmium.
    Pramanik K; Mitra S; Sarkar A; Soren T; Maiti TK
    Environ Sci Pollut Res Int; 2017 Nov; 24(31):24419-24437. PubMed ID: 28895046
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Revealing the potential of
    Jha V; Purohit H; Dafale NA
    3 Biotech; 2021 Nov; 11(11):473. PubMed ID: 34777930
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of Cd-resistant Klebsiella michiganensis MCC3089 and its potential for rice seedling growth promotion under Cd stress.
    Mitra S; Pramanik K; Ghosh PK; Soren T; Sarkar A; Dey RS; Pandey S; Maiti TK
    Microbiol Res; 2018 May; 210():12-25. PubMed ID: 29625654
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Whole genome analysis of halotolerant and alkalotolerant plant growth-promoting rhizobacterium Klebsiella sp. D5A.
    Liu W; Wang Q; Hou J; Tu C; Luo Y; Christie P
    Sci Rep; 2016 May; 6():26710. PubMed ID: 27216548
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The genomic attributes of Cd-resistant, hydrocarbonoclastic Bacillus subtilis SR1 for rhizodegradation of benzo(a)pyrene under co-contaminated conditions.
    Kotoky R; Pandey P
    Genomics; 2021 Jan; 113(1 Pt 2):613-623. PubMed ID: 33002627
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Whole-Genome Sequence Insight into the Plant-Growth-Promoting Bacterium
    Khalifa A; Alsowayeh N
    Plants (Basel); 2023 May; 12(10):. PubMed ID: 37653860
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Draft genome sequence of Mycobacterium rufum JS14(T), a polycyclic-aromatic-hydrocarbon-degrading bacterium from petroleum-contaminated soil in Hawaii.
    Kwak Y; Li QX; Shin JH
    Stand Genomic Sci; 2016; 11():47. PubMed ID: 27486485
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The rhizosphere microbiome: Significance in rhizoremediation of polyaromatic hydrocarbon contaminated soil.
    Kotoky R; Rajkumari J; Pandey P
    J Environ Manage; 2018 Jul; 217():858-870. PubMed ID: 29660711
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Growth promotion and yield enhancement of peanut (Arachis hypogaea L.) by application of plant growth-promoting rhizobacteria.
    Dey R; Pal KK; Bhatt DM; Chauhan SM
    Microbiol Res; 2004; 159(4):371-94. PubMed ID: 15646384
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Assessing the effects of heavy metals in ACC deaminase and IAA production on plant growth-promoting bacteria.
    Carlos MJ; Stefani PY; Janette AM; Melani MS; Gabriela PO
    Microbiol Res; 2016; 188-189():53-61. PubMed ID: 27296962
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Isolation and characterization of indole acetic acid (IAA) producing Klebsiella pneumoniae strains from rhizosphere of wheat (Triticum aestivum) and their effect on plant growth.
    Sachdev DP; Chaudhari HG; Kasture VM; Dhavale DD; Chopade BA
    Indian J Exp Biol; 2009 Dec; 47(12):993-1000. PubMed ID: 20329704
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Copper-tolerant rhizosphere bacteria-characterization and assessment of plant growth promoting factors.
    Rathi M; Nandabalan YK
    Environ Sci Pollut Res Int; 2017 Apr; 24(10):9723-9733. PubMed ID: 28251535
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Functionally coherent transcriptional responses of Jatropha curcas and Pseudomonas fragi for rhizosphere mediated degradation of pyrene.
    Singha LP; Singha KM; Pandey P
    Sci Rep; 2024 Jan; 14(1):1014. PubMed ID: 38200308
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High aromatic ring-cleavage diversity in birch rhizosphere: PAH treatment-specific changes of I.E.3 group extradiol dioxygenases and 16S rRNA bacterial communities in soil.
    Sipilä TP; Keskinen AK; Akerman ML; Fortelius C; Haahtela K; Yrjälä K
    ISME J; 2008 Sep; 2(9):968-81. PubMed ID: 18563190
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.