These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

402 related articles for article (PubMed ID: 29430924)

  • 1. Optical Voltage Sensing Using DNA Origami.
    Hemmig EA; Fitzgerald C; Maffeo C; Hecker L; Ochmann SE; Aksimentiev A; Tinnefeld P; Keyser UF
    Nano Lett; 2018 Mar; 18(3):1962-1971. PubMed ID: 29430924
    [TBL] [Abstract][Full Text] [Related]  

  • 2. DNA Origami Voltage Sensors for Transmembrane Potentials with Single-Molecule Sensitivity.
    Ochmann SE; Joshi H; Büber E; Franquelim HG; Stegemann P; Saccà B; Keyser UF; Aksimentiev A; Tinnefeld P
    Nano Lett; 2021 Oct; 21(20):8634-8641. PubMed ID: 34662130
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ionic conductivity, structural deformation, and programmable anisotropy of DNA origami in electric field.
    Li CY; Hemmig EA; Kong J; Yoo J; Hernández-Ainsa S; Keyser UF; Aksimentiev A
    ACS Nano; 2015 Feb; 9(2):1420-33. PubMed ID: 25623807
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mapping the thermal behavior of DNA origami nanostructures.
    Wei X; Nangreave J; Jiang S; Yan H; Liu Y
    J Am Chem Soc; 2013 Apr; 135(16):6165-76. PubMed ID: 23537246
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Distance Dependence of Single-Molecule Energy Transfer to Graphene Measured with DNA Origami Nanopositioners.
    Kaminska I; Bohlen J; Rocchetti S; Selbach F; Acuna GP; Tinnefeld P
    Nano Lett; 2019 Jul; 19(7):4257-4262. PubMed ID: 31251640
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Force-Induced Unravelling of DNA Origami.
    Engel MC; Smith DM; Jobst MA; Sajfutdinow M; Liedl T; Romano F; Rovigatti L; Louis AA; Doye JPK
    ACS Nano; 2018 Jul; 12(7):6734-6747. PubMed ID: 29851456
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Design of ultrasensitive DNA-based fluorescent pH sensitive nanodevices.
    Halder S; Krishnan Y
    Nanoscale; 2015 Jun; 7(22):10008-12. PubMed ID: 25990365
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electrical Actuation of a DNA Origami Nanolever on an Electrode.
    Kroener F; Heerwig A; Kaiser W; Mertig M; Rant U
    J Am Chem Soc; 2017 Nov; 139(46):16510-16513. PubMed ID: 29111693
    [TBL] [Abstract][Full Text] [Related]  

  • 9. "DNA Origami Traffic Lights" with a Split Aptamer Sensor for a Bicolor Fluorescence Readout.
    Walter HK; Bauer J; Steinmeyer J; Kuzuya A; Niemeyer CM; Wagenknecht HA
    Nano Lett; 2017 Apr; 17(4):2467-2472. PubMed ID: 28249387
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dynamic DNA Origami Device for Measuring Compressive Depletion Forces.
    Hudoba MW; Luo Y; Zacharias A; Poirier MG; Castro CE
    ACS Nano; 2017 Jul; 11(7):6566-6573. PubMed ID: 28582611
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Single-molecule mechanochemical sensing using DNA origami nanostructures.
    Koirala D; Shrestha P; Emura T; Hidaka K; Mandal S; Endo M; Sugiyama H; Mao H
    Angew Chem Int Ed Engl; 2014 Jul; 53(31):8137-41. PubMed ID: 24931175
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Single-molecule FRET ruler based on rigid DNA origami blocks.
    Stein IH; Schüller V; Böhm P; Tinnefeld P; Liedl T
    Chemphyschem; 2011 Feb; 12(3):689-95. PubMed ID: 21308944
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Simultaneous Single-Molecule Force and Fluorescence Sampling of DNA Nanostructure Conformations Using Magnetic Tweezers.
    Kemmerich FE; Swoboda M; Kauert DJ; Grieb MS; Hahn S; Schwarz FW; Seidel R; Schlierf M
    Nano Lett; 2016 Jan; 16(1):381-6. PubMed ID: 26632021
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reversible reconfiguration of DNA origami nanochambers monitored by single-molecule FRET.
    Saccà B; Ishitsuka Y; Meyer R; Sprengel A; Schöneweiß EC; Nienhaus GU; Niemeyer CM
    Angew Chem Int Ed Engl; 2015 Mar; 54(12):3592-7. PubMed ID: 25630797
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biocompatible force sensor with optical readout and dimensions of 6 nm3.
    Shroff H; Reinhard BM; Siu M; Agarwal H; Spakowitz A; Liphardt J
    Nano Lett; 2005 Jul; 5(7):1509-14. PubMed ID: 16178266
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Single-Molecule Mechanochemical Sensing Using DNA Origami Nanostructures.
    Jonchhe S; Mao H
    Methods Mol Biol; 2019; 2027():171-180. PubMed ID: 31309481
    [TBL] [Abstract][Full Text] [Related]  

  • 17. DNA nanoarchitectures: steps towards biological applications.
    Tintoré M; Eritja R; Fábrega C
    Chembiochem; 2014 Jul; 15(10):1374-90. PubMed ID: 24953971
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Directional Photonic Wire Mediated by Homo-Förster Resonance Energy Transfer on a DNA Origami Platform.
    Nicoli F; Barth A; Bae W; Neukirchinger F; Crevenna AH; Lamb DC; Liedl T
    ACS Nano; 2017 Nov; 11(11):11264-11272. PubMed ID: 29063765
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Understanding the mechanical properties of DNA origami tiles and controlling the kinetics of their folding and unfolding reconfiguration.
    Chen H; Weng TW; Riccitelli MM; Cui Y; Irudayaraj J; Choi JH
    J Am Chem Soc; 2014 May; 136(19):6995-7005. PubMed ID: 24749534
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Interchromophoric Interactions Determine the Maximum Brightness Density in DNA Origami Structures.
    Schröder T; Scheible MB; Steiner F; Vogelsang J; Tinnefeld P
    Nano Lett; 2019 Feb; 19(2):1275-1281. PubMed ID: 30681342
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.