These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 29431151)

  • 1. Hydrodynamic shrinkage of liquid CO
    Qin N; Wen JZ; Ren CL
    J Phys Condens Matter; 2018 Mar; 30(9):094002. PubMed ID: 29431151
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Surfactant solutions and porous substrates: spreading and imbibition.
    Starov VM
    Adv Colloid Interface Sci; 2004 Nov; 111(1-2):3-27. PubMed ID: 15571660
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High throughput single-cell and multiple-cell micro-encapsulation.
    Lagus TP; Edd JF
    J Vis Exp; 2012 Jun; (64):e4096. PubMed ID: 22733254
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hydrodynamic resistance of single confined moving drops in rectangular microchannels.
    Vanapalli SA; Banpurkar AG; van den Ende D; Duits MH; Mugele F
    Lab Chip; 2009 Apr; 9(7):982-90. PubMed ID: 19294311
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sheathless hydrodynamic positioning of buoyant drops and bubbles inside microchannels.
    Stan CA; Guglielmini L; Ellerbee AK; Caviezel D; Stone HA; Whitesides GM
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Sep; 84(3 Pt 2):036302. PubMed ID: 22060487
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Erratum: Eyestalk Ablation to Increase Ovarian Maturation in Mud Crabs.
    J Vis Exp; 2023 May; (195):. PubMed ID: 37235796
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Spreading of liquid drops over porous substrates.
    Starov VM; Zhdanov SA; Kosvintsev SR; Sobolev VD; Velarde MG
    Adv Colloid Interface Sci; 2003 Jul; 104():123-58. PubMed ID: 12818493
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The hydrodynamics of segmented two-phase flow in a circular tube with rapidly dissolving drops.
    Leary TF; Ramachandran A
    Soft Matter; 2017 May; 13(17):3147-3160. PubMed ID: 28397931
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pressure drop of slug flow in microchannels with increasing void fraction: experiment and modeling.
    Molla S; Eskin D; Mostowfi F
    Lab Chip; 2011 Jun; 11(11):1968-78. PubMed ID: 21512682
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Controllable preparation of nanoparticles by drops and plugs flow in a microchannel device.
    Li S; Xu J; Wang Y; Luo G
    Langmuir; 2008 Apr; 24(8):4194-9. PubMed ID: 18335970
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Flow and Thermal Performance of a Water-Cooled Periodic Transversal Elliptical Microchannel Heat Sink for Chip Cooling.
    Wei B; Yang M; Wang Z; Xu H; Zhang Y
    J Nanosci Nanotechnol; 2015 Apr; 15(4):3061-6. PubMed ID: 26353536
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Experimental validation of a numerical model for predicting the trajectory of blood drops in typical crime scene conditions, including droplet deformation and breakup, with a study of the effect of indoor air currents and wind on typical spatter drop trajectories.
    Kabaliuk N; Jermy MC; Williams E; Laber TL; Taylor MC
    Forensic Sci Int; 2014 Dec; 245():107-20. PubMed ID: 25447183
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Flow Pattern Study and Pressure Drop Prediction of Two-Phase Boiling Process in Different Surface Wettability Microchannel.
    Zhang Y; Wu H; Zhang L; Yang Y; Niu X; Zeng Z; Shu B
    Micromachines (Basel); 2023 Apr; 14(5):. PubMed ID: 37241582
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Trapped liquid drop in a microchannel: multiple stable states.
    Wang Z; Chang CC; Hong SJ; Sheng YJ; Tsao HK
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Jun; 87(6):062401. PubMed ID: 23848691
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mass Transfer Accompanying Coalescence of Surfactant-Laden and Surfactant-Free Drop in a Microfluidic Channel.
    Kovalchuk NM; Reichow M; Frommweiler T; Vigolo D; Simmons MJH
    Langmuir; 2019 Jul; 35(28):9184-9193. PubMed ID: 31268330
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hydrodynamic control of the interface between two liquids flowing through a horizontal or vertical microchannel.
    Stiles PJ; Fletcher DF
    Lab Chip; 2004 Apr; 4(2):121-4. PubMed ID: 15052351
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Formation of shaped drops in a fast continuous flow process.
    Walther B; Hamberg L; Walkenström P; Hermansson AM
    J Colloid Interface Sci; 2004 Feb; 270(1):195-204. PubMed ID: 14693152
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Kinetic drop friction.
    Li X; Bodziony F; Yin M; Marschall H; Berger R; Butt HJ
    Nat Commun; 2023 Jul; 14(1):4571. PubMed ID: 37516769
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hydrodynamic forces acting on a microscopic emulsion drop growing at a capillary tip in relation to the process of membrane emulsification.
    Danov KD; Danova DK; Kralchevsky PA
    J Colloid Interface Sci; 2007 Dec; 316(2):844-57. PubMed ID: 17900600
    [TBL] [Abstract][Full Text] [Related]  

  • 20. On-chip thermopneumatic pressure for discrete drop pumping.
    Handique K; Burke DT; Mastrangelo CH; Burns MA
    Anal Chem; 2001 Apr; 73(8):1831-8. PubMed ID: 11338598
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.