These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

102 related articles for article (PubMed ID: 29431437)

  • 1. Fast Oxidation of Porous Cu Induced by Nano-Twinning.
    Nishimoto K; Krajčí M; Sakurai T; Iwamoto H; Onoda M; Nishimura C; Tsai JT; Wang SF; Kameoka S; Tsai AP
    Inorg Chem; 2018 Mar; 57(5):2908-2916. PubMed ID: 29431437
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of De-Twinning on Tensile Strength of Nano-Twinned Cu Films.
    Lee CH; Lin EJ; Wang JY; Lin YX; Wu CY; Chiu CY; Yeh CY; Huang BR; Fu KL; Liu CY
    Nanomaterials (Basel); 2021 Jun; 11(7):. PubMed ID: 34206189
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Twinning in fcc lattice creates low-coordinated catalytically active sites in porous gold.
    Krajčí M; Kameoka S; Tsai AP
    J Chem Phys; 2016 Aug; 145(8):084703. PubMed ID: 27586937
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In situ X-ray diffraction measurement of shock-wave-driven twinning and lattice dynamics.
    Wehrenberg CE; McGonegle D; Bolme C; Higginbotham A; Lazicki A; Lee HJ; Nagler B; Park HS; Remington BA; Rudd RE; Sliwa M; Suggit M; Swift D; Tavella F; Zepeda-Ruiz L; Wark JS
    Nature; 2017 Oct; 550(7677):496-499. PubMed ID: 29072261
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nanostructured copper/copper oxide hybrids: combined experimental and theoretical studies.
    Li J; Yu N; Geng H
    Phys Chem Chem Phys; 2016 Aug; 18(31):21562-72. PubMed ID: 27425769
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Graphene Nucleation Preference at CuO Defects Rather Than Cu
    Sun X; Su Z; Zhang J; Liu X; Li Y; Yu F; Cheng X; Zhao X
    ACS Appl Mater Interfaces; 2018 Dec; 10(49):43156-43165. PubMed ID: 30396269
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Understanding the catalytic activity of nanoporous gold: Role of twinning in fcc lattice.
    Krajčí M; Kameoka S; Tsai AP
    J Chem Phys; 2017 Jul; 147(4):044713. PubMed ID: 28764355
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Insights into the dominant factors of porous gold for CO oxidation.
    Kameoka S; Tanabe T; Miyamoto K; Tsai AP
    J Chem Phys; 2016 Jan; 144(3):034703. PubMed ID: 26801039
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Facile synthesis and excellent recyclable photocatalytic activity of pine cone-like Fe3O4@Cu2O/Cu porous nanocomposites.
    Wang H; Hu Y; Jiang Y; Qiu L; Wu H; Guo B; Shen Y; Wang Y; Zhu L; Xie A
    Dalton Trans; 2013 Apr; 42(14):4915-21. PubMed ID: 23380894
    [TBL] [Abstract][Full Text] [Related]  

  • 10. One-Step Method for Fabricating Porous Copper with Hierarchical Porosities by Dealloying Multi-Phase Cu–Mn–Al Alloy.
    Lian LX; Tang Y; Liu Y; Fang XM
    J Nanosci Nanotechnol; 2017 Feb; 17(2):1464-469. PubMed ID: 29687986
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Kinetic products in coordination networks: ab initio X-ray powder diffraction analysis.
    Martí-Rujas J; Kawano M
    Acc Chem Res; 2013 Feb; 46(2):493-505. PubMed ID: 23252592
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A novel method to synthesize highly photoactive Cu2O microcrystalline films for use in photoelectrochemical cells.
    Li C; Li Y; Delaunay JJ
    ACS Appl Mater Interfaces; 2014 Jan; 6(1):480-6. PubMed ID: 24299015
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Voltammetric surface dealloying of Pt bimetallic nanoparticles: an experimental and DFT computational analysis.
    Strasser P; Koh S; Greeley J
    Phys Chem Chem Phys; 2008 Jul; 10(25):3670-83. PubMed ID: 18563228
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The structure of nano-twinned rhombohedral YCuO
    Klein H; Garlea VO; Darie C; Bordet P
    Acta Crystallogr B Struct Sci Cryst Eng Mater; 2019 Feb; 75(Pt 1):107-112. PubMed ID: 32830784
    [TBL] [Abstract][Full Text] [Related]  

  • 15. First-principles predictions of the structure, stability, and photocatalytic potential of Cu2O surfaces.
    Bendavid LI; Carter EA
    J Phys Chem B; 2013 Dec; 117(49):15750-60. PubMed ID: 24138294
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Trimethylaluminum and Oxygen Atomic Layer Deposition on Hydroxyl-Free Cu(111).
    Gharachorlou A; Detwiler MD; Gu XK; Mayr L; Klötzer B; Greeley J; Reifenberger RG; Delgass WN; Ribeiro FH; Zemlyanov DY
    ACS Appl Mater Interfaces; 2015 Aug; 7(30):16428-39. PubMed ID: 26158796
    [TBL] [Abstract][Full Text] [Related]  

  • 17. One-step hydrothermal synthesis of a porous Cu2O film and its photoelectrochemical properties.
    Ji R; Sun W; Chu Y
    Chemphyschem; 2013 Dec; 14(17):3971-6. PubMed ID: 24203622
    [TBL] [Abstract][Full Text] [Related]  

  • 18. FA(I):A(+) and FA(II):Cu(+) laser activity and photographic sensitization at the low coordinated surfaces of AgBr ab initio calculations.
    Shalabi AS
    J Comput Chem; 2002 Aug; 23(11):1104-20. PubMed ID: 12116397
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Heat-induced spinodal decomposition of Ag-Cu nanoparticles.
    Sopoušek J; Zobač O; Buršík J; Roupcová P; Vykoukal V; Brož P; Pinkas J; Vřešt'ál J
    Phys Chem Chem Phys; 2015 Nov; 17(42):28277-85. PubMed ID: 25929324
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synthesis of magnetic porous Fe3O4/C/Cu2O composite as an excellent photo-Fenton catalyst under neutral condition.
    Chai F; Li K; Song C; Guo X
    J Colloid Interface Sci; 2016 Aug; 475():119-125. PubMed ID: 27161809
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.