These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
122 related articles for article (PubMed ID: 29431445)
1. Hydrolysis of Phosphonothioates with a Binaphthyl Group: P-Stereogenic O-Binaphthyl Phosphonothioic Acids and Their Use as Optically Active Ligands and Chiral Discriminating Agents. Kuwabara K; Maekawa Y; Minoura M; Murai T Org Lett; 2018 Mar; 20(5):1375-1379. PubMed ID: 29431445 [TBL] [Abstract][Full Text] [Related]
2. Chemoselective and Stereoselective Alcoholysis of Binaphthyl Phosphonothioates: Straightforward Access to Both Stereoisomers of Biologically Relevant Kuwabara K; Maekawa Y; Minoura M; Maruyama T; Murai T J Org Chem; 2020 Nov; 85(22):14446-14455. PubMed ID: 32615763 [No Abstract] [Full Text] [Related]
3. Synthesis and catalytic activity of group 5 metal amides with chiral biaryldiamine-based ligands. Zhang F; Song H; Zi G Dalton Trans; 2011 Feb; 40(7):1547-66. PubMed ID: 21218246 [TBL] [Abstract][Full Text] [Related]
4. Fluorinative hydrolysis of phosphorothioic acid esters with a binaphthyl group through axis-to-center chirality transfer leading to the formation of P-chiral phosphorothioic monofluoridic acid salts. Murai T; Hayashi T; Yamada K; Maekawa Y; Minoura M Chem Commun (Camb); 2014 Oct; 50(83):12473-5. PubMed ID: 25195782 [TBL] [Abstract][Full Text] [Related]
5. Significant Enhancement of the Chiral Correlation Length in Nematic Liquid Crystals by Gold Nanoparticle Surfaces Featuring Axially Chiral Binaphthyl Ligands. Mori T; Sharma A; Hegmann T ACS Nano; 2016 Jan; 10(1):1552-64. PubMed ID: 26735843 [TBL] [Abstract][Full Text] [Related]
6. Chiral Bidentate NHC Ligands Based on the 1,1'-Binaphthyl Scaffold: Synthesis and Application in Transition-Metal-Catalyzed Asymmetric Reactions. Xu Q; Gu P; Jiang H; Wei Y; Shi M Chem Rec; 2016 Dec; 16(6):2736-2749. PubMed ID: 27666585 [TBL] [Abstract][Full Text] [Related]
7. Synthesis and characterization of group 4 metal amides with new C2-symmetric binaphthyldiamine-based ligands and their use as catalysts for asymmetric hydroamination/cyclization. Zi G; Zhang F; Xiang L; Chen Y; Fang W; Song H Dalton Trans; 2010 May; 39(17):4048-61. PubMed ID: 20390168 [TBL] [Abstract][Full Text] [Related]
8. Synthesis and catalytic activity of gold chiral nitrogen acyclic carbenes and gold hydrogen bonded heterocyclic carbenes in cyclopropanation of vinyl arenes and in intramolecular hydroalkoxylation of allenes. Bartolomé C; García-Cuadrado D; Ramiro Z; Espinet P Inorg Chem; 2010 Nov; 49(21):9758-64. PubMed ID: 20614913 [TBL] [Abstract][Full Text] [Related]
10. Asymmetric benzoin condensation catalyzed by chiral rotaxanes tethering a thiazolium salt moiety via the cooperation of the component: can rotaxane be an effective reaction field? Tachibana Y; Kihara N; Takata T J Am Chem Soc; 2004 Mar; 126(11):3438-9. PubMed ID: 15025467 [TBL] [Abstract][Full Text] [Related]
11. Phase-transfer-catalyzed asymmetric synthesis of axially chiral anilides. Liu K; Wu X; Kan SB; Shirakawa S; Maruoka K Chem Asian J; 2013 Dec; 8(12):3214-21. PubMed ID: 24273122 [TBL] [Abstract][Full Text] [Related]
12. Highly enantioselective synthesis of chiral allenes by sequential creation of stereogenic center and chirality transfer in a single pot operation. Periasamy M; Sanjeevakumar N; Dalai M; Gurubrahamam R; Reddy PO Org Lett; 2012 Jun; 14(12):2932-5. PubMed ID: 22587711 [TBL] [Abstract][Full Text] [Related]
13. [Application of binaphthyl derivatives as chiral stationary phases in high performance liquid chromatography]. Liu X; Ding J; Gao L Se Pu; 2005 Mar; 23(2):146-51. PubMed ID: 16013557 [TBL] [Abstract][Full Text] [Related]
14. Rapid optical methods for enantiomeric excess analysis: from enantioselective indicator displacement assays to exciton-coupled circular dichroism. Jo HH; Lin CY; Anslyn EV Acc Chem Res; 2014 Jul; 47(7):2212-21. PubMed ID: 24892802 [TBL] [Abstract][Full Text] [Related]
15. Chiral metallocycles: rational synthesis and novel applications. Lee SJ; Lin W Acc Chem Res; 2008 Apr; 41(4):521-37. PubMed ID: 18271561 [TBL] [Abstract][Full Text] [Related]
16. Transition State Models for Understanding the Origin of Chiral Induction in Asymmetric Catalysis. Sunoj RB Acc Chem Res; 2016 May; 49(5):1019-28. PubMed ID: 27101013 [TBL] [Abstract][Full Text] [Related]
17. A new synthetic route for axially chiral secondary amines with binaphthyl backbone and their applications in asymmetric Michael reaction of aldehydes to nitroalkenes. Liang DC; Luo RS; Yin LH; Chan AS; Lu G Org Biomol Chem; 2012 Apr; 10(15):3071-9. PubMed ID: 22395306 [TBL] [Abstract][Full Text] [Related]
18. 2,8'-disubstituted-1,1'-binaphthyls: a new pattern in chiral ligands. Vyskocil S; Meca L; Tislerová I; Císarová I; Polásek M; Harutyunyan SR; Belokon YN; Stead RM; Farrugia L; Lockhart SC; Mitchell WL; Kocovský P Chemistry; 2002 Oct; 8(20):4633-48. PubMed ID: 12561104 [TBL] [Abstract][Full Text] [Related]
19. C Konishi A; Nakaoka K; Maruyama H; Nakajima H; Eguchi T; Baba A; Yasuda M Chemistry; 2017 Jan; 23(6):1273-1277. PubMed ID: 27933675 [TBL] [Abstract][Full Text] [Related]
20. [The determination of enantiomeric purity for 1,1'-binaphthyl-2,2'-diol by high performance liquid chromatography]. Wang M; Wu J; Liang X Se Pu; 1997 Mar; 15(2):168-9. PubMed ID: 15739414 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]