These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 29431723)

  • 1. Release of hydrogen sulfide under intermittent flow conditions - the potential of simulation models.
    Matias N; Matos R; Ferreira F; Vollertsen J; Matos JS
    Water Sci Technol; 2018 Feb; 77(3-4):777-787. PubMed ID: 29431723
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hydrogen sulfide emission in sewer networks: a two-phase modeling approach to the sulfur cycle.
    Yongsiri C; Vollertsen J; Hvitved-Jacobsen T
    Water Sci Technol; 2004; 50(4):161-8. PubMed ID: 15484757
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Introducing the emission process of hydrogen sulfide to a sewer process model (WATS).
    Yongsiri C; Hvitved-Jacobsen T; Vollertsen J; Tanaka N
    Water Sci Technol; 2003; 47(4):85-92. PubMed ID: 12666805
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A different approach for predicting H(2)S((g)) emission rates in gravity sewers.
    Lahav O; Sagiv A; Friedler E
    Water Res; 2006 Jan; 40(2):259-66. PubMed ID: 16343590
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modeling Sulfides, pH and Hydrogen Sulfide Gas in the Sewers of San Francisco.
    Vollertsen J; Revilla N; Hvitved-Jacobsen T; Nielsen AH
    Water Environ Res; 2015 Nov; 87(11):1980-9. PubMed ID: 26564586
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modeling sulfide production in full flow concrete sewers based on the HRT variation of sewerage.
    Wang J; Xu X; Liu S; Shao Y; Zhang J; Wang J; Li Q; He Y; Wang Y; Sun W; Luo F; Qi W; Liu G; Qi L; Wang H
    Water Sci Technol; 2021 May; 83(9):2063-2074. PubMed ID: 33989176
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Release of hydrogen sulfide in a sewer system under intermittent flow conditions: the Eiceira case study, in Portugal.
    Matias N; Matos RV; Ferreira F; Vollertsen J; Matos JS
    Water Sci Technol; 2017 Apr; 75(7-8):1702-1711. PubMed ID: 28402312
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Recent findings on sinks for sulfide in gravity sewer networks.
    Nielsen AH; Hvitved-Jacobsen T; Vollertsen J
    Water Sci Technol; 2006; 54(6-7):127-34. PubMed ID: 17120642
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Air-water transfer of hydrogen sulfide: an approach for application in sewer networks.
    Yongsiri C; Vollertsen J; Rasmussen M; Hvitved-Jacobsen T
    Water Environ Res; 2004; 76(1):81-8. PubMed ID: 15058468
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Liquid-gas mass transfer at drop structures.
    Matias N; Nielsen AH; Vollertsen J; Ferreira F; Matos JS
    Water Sci Technol; 2017 May; 75(10):2257-2267. PubMed ID: 28541933
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modeling the formation and fate of odorous substances in collection systems.
    Vollertsen J; Nielsen AH; Jensen HS; Hvitved-Jacobsen T
    Water Environ Res; 2008 Feb; 80(2):118-26. PubMed ID: 18330221
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Influence of pipe material and surfaces on sulfide related odor and corrosion in sewers.
    Nielsen AH; Vollertsen J; Jensen HS; Wium-Andersen T; Hvitved-Jacobsen T
    Water Res; 2008 Sep; 42(15):4206-14. PubMed ID: 18723203
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modelling to assist in wastewater collection system odour and corrosion potential evaluations.
    Witherspoon J; Allen E; Quigley C
    Water Sci Technol; 2004; 50(4):177-83. PubMed ID: 15484759
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Influence of relative air/water flow velocity on oxygen mass transfer in gravity sewers.
    Carrera L; Springer F; Lipeme-Kouyi G; Buffiere P
    Water Sci Technol; 2017 Apr; 75(7-8):1529-1538. PubMed ID: 28402293
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A review of sulfide emissions in sewer networks: overall approach and systemic modelling.
    Carrera L; Springer F; Lipeme-Kouyi G; Buffiere P
    Water Sci Technol; 2016; 73(6):1231-42. PubMed ID: 27003062
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Global sensitivity analysis of an in-sewer process model for the study of sulfide-induced corrosion of concrete.
    Donckels BM; Kroll S; Van Dorpe M; Weemaes M
    Water Sci Technol; 2014; 69(3):647-55. PubMed ID: 24552740
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Simulation of sulfide buildup in wastewater and atmosphere of sewer networks.
    Nielsen AH; Yongsiri C; Hvitved-Jacobsen T; Vollertsen J
    Water Sci Technol; 2005; 52(3):201-8. PubMed ID: 16206860
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chemical and biological technologies for hydrogen sulfide emission control in sewer systems: a review.
    Zhang L; De Schryver P; De Gusseme B; De Muynck W; Boon N; Verstraete W
    Water Res; 2008 Jan; 42(1-2):1-12. PubMed ID: 17692889
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Understanding the effect of ventilation, intermittent pumping and seasonality in hydrogen sulfide and methane concentrations in a coastal sewerage system.
    Matos RV; Ferreira F; Gil C; Matos JS
    Environ Sci Pollut Res Int; 2019 Feb; 26(4):3404-3414. PubMed ID: 30511226
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hydrogen sulfide control in sewer systems: A critical review of recent progress.
    Zhang L; Qiu YY; Sharma KR; Shi T; Song Y; Sun J; Liang Z; Yuan Z; Jiang F
    Water Res; 2023 Jul; 240():120046. PubMed ID: 37224665
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.