BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 29431761)

  • 1. Isothermal multiple displacement amplification of DNA templates in minimally buffered conditions using phi29 polymerase.
    Tenaglia E; Imaizumi Y; Miyahara Y; Guiducci C
    Chem Commun (Camb); 2018 Feb; 54(17):2158-2161. PubMed ID: 29431761
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In vitro evolution of phi29 DNA polymerase using isothermal compartmentalized self replication technique.
    Povilaitis T; Alzbutas G; Sukackaite R; Siurkus J; Skirgaila R
    Protein Eng Des Sel; 2016 Dec; 29(12):617-628. PubMed ID: 27672049
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Whole-genome amplification using Φ29 DNA polymerase.
    Burtt NP
    Cold Spring Harb Protoc; 2011 Jan; 2011(1):pdb.prot5552. PubMed ID: 21205852
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rapid amplification of plasmid and phage DNA using Phi 29 DNA polymerase and multiply-primed rolling circle amplification.
    Dean FB; Nelson JR; Giesler TL; Lasken RS
    Genome Res; 2001 Jun; 11(6):1095-9. PubMed ID: 11381035
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multiple displacement amplification products are compatible with recombination-based cloning.
    Jakov MB; Kassner PD
    Biotechniques; 2007 Jun; 42(6):706, 708. PubMed ID: 17612292
    [No Abstract]   [Full Text] [Related]  

  • 6. TempliPhi, phi29 DNA polymerase based rolling circle amplification of templates for DNA sequencing.
    Nelson JR; Cai YC; Giesler TL; Farchaus JW; Sundaram ST; Ortiz-Rivera M; Hosta LP; Hewitt PL; Mamone JA; Palaniappan C; Fuller CW
    Biotechniques; 2002 Jun; Suppl():44-7. PubMed ID: 12083397
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Optimal DNA templates for rolling circle amplification revealed by in vitro selection.
    Mao Y; Liu M; Tram K; Gu J; Salena BJ; Jiang Y; Li Y
    Chemistry; 2015 May; 21(22):8069-74. PubMed ID: 25877998
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Improvement of φ29 DNA polymerase amplification performance by fusion of DNA binding motifs.
    de Vega M; Lázaro JM; Mencía M; Blanco L; Salas M
    Proc Natl Acad Sci U S A; 2010 Sep; 107(38):16506-11. PubMed ID: 20823261
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cell-free cloning using phi29 DNA polymerase.
    Hutchison CA; Smith HO; Pfannkoch C; Venter JC
    Proc Natl Acad Sci U S A; 2005 Nov; 102(48):17332-6. PubMed ID: 16286637
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In vitro evolution of phi29 DNA polymerases through compartmentalized gene expression and rolling-circle replication.
    Sakatani Y; Mizuuchi R; Ichihashi N
    Protein Eng Des Sel; 2019 Dec; 32(11):481-487. PubMed ID: 32533140
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Repeated GenomiPhi, phi29 DNA polymerase-based rolling circle amplification, is useful for generation of large amounts of plasmid DNA.
    Sato M; Ohtsuka M; Ohmi Y
    Nucleic Acids Symp Ser (Oxf); 2004; (48):147-8. PubMed ID: 17150521
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Application of Phi29 DNA polymerase mediated whole genome amplification on single spores of arbuscular mycorrhizal (AM) fungi.
    Gadkar V; Rillig MC
    FEMS Microbiol Lett; 2005 Jan; 242(1):65-71. PubMed ID: 15621421
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Investigating the utility of combining phi29 whole genome amplification and highly multiplexed single nucleotide polymorphism BeadArray genotyping.
    Pask R; Rance HE; Barratt BJ; Nutland S; Smyth DJ; Sebastian M; Twells RC; Smith A; Lam AC; Smink LJ; Walker NM; Todd JA
    BMC Biotechnol; 2004 Jul; 4():15. PubMed ID: 15279678
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Phi29 polymerase based random amplification of viral RNA as an alternative to random RT-PCR.
    Berthet N; Reinhardt AK; Leclercq I; van Ooyen S; Batéjat C; Dickinson P; Stamboliyska R; Old IG; Kong KA; Dacheux L; Bourhy H; Kennedy GC; Korfhage C; Cole ST; Manuguerra JC
    BMC Mol Biol; 2008 Sep; 9():77. PubMed ID: 18771595
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Whole-metagenome amplification of a microbial community associated with scleractinian coral by multiple displacement amplification using phi29 polymerase.
    Yokouchi H; Fukuoka Y; Mukoyama D; Calugay R; Takeyama H; Matsunaga T
    Environ Microbiol; 2006 Jul; 8(7):1155-63. PubMed ID: 16817924
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification of efficient fluorophores for the direct labeling of DNA via rolling circle amplification (RCA) polymerase φ29.
    Linck L; Resch-Genger U
    Eur J Med Chem; 2010 Dec; 45(12):5561-6. PubMed ID: 20926164
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Robust and highly specific fluorescence sensing of Salmonella typhimurium based on dual-functional phi29 DNA polymerase-mediated isothermal circular strand displacement polymerization.
    Li S; Liu S; Xu Y; Zhang R; Zhao Y; Qu X; Wang Y; Huang J; Yu J
    Analyst; 2019 Aug; 144(16):4795-4802. PubMed ID: 31274133
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Decontamination of MDA reagents for single cell whole genome amplification.
    Woyke T; Sczyrba A; Lee J; Rinke C; Tighe D; Clingenpeel S; Malmstrom R; Stepanauskas R; Cheng JF
    PLoS One; 2011; 6(10):e26161. PubMed ID: 22028825
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Genomic DNA amplification from a single bacterium.
    Raghunathan A; Ferguson HR; Bornarth CJ; Song W; Driscoll M; Lasken RS
    Appl Environ Microbiol; 2005 Jun; 71(6):3342-7. PubMed ID: 15933038
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optimization and evaluation of single-cell whole-genome multiple displacement amplification.
    Spits C; Le Caignec C; De Rycke M; Van Haute L; Van Steirteghem A; Liebaers I; Sermon K
    Hum Mutat; 2006 May; 27(5):496-503. PubMed ID: 16619243
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.