BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

205 related articles for article (PubMed ID: 29431803)

  • 1. Cretan tea (Origanum dictamnus L.) as a functional beverage: an investigation on antiglycative and carbonyl trapping activities.
    Maietta M; Colombo R; Corana F; Papetti A
    Food Funct; 2018 Mar; 9(3):1545-1556. PubMed ID: 29431803
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Artichoke (Cynara cardunculus L. var. scolymus) waste as a natural source of carbonyl trapping and antiglycative agents.
    Maietta M; Colombo R; Lavecchia R; Sorrenti M; Zuorro A; Papetti A
    Food Res Int; 2017 Oct; 100(Pt 1):780-790. PubMed ID: 28873750
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Carbonyl trapping and antiglycative activities of olive oil mill wastewater.
    Navarro M; Fiore A; Fogliano V; Morales FJ
    Food Funct; 2015 Feb; 6(2):574-83. PubMed ID: 25519075
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Potential of Vasoprotectives to Inhibit Non-Enzymatic Protein Glycation, and Reactive Carbonyl and Oxygen Species Uptake.
    Bednarska K; Fecka I
    Int J Mol Sci; 2021 Sep; 22(18):. PubMed ID: 34576189
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tea polyphenol (-)-epigallocatechin-3-gallate: a new trapping agent of reactive dicarbonyl species.
    Sang S; Shao X; Bai N; Lo CY; Yang CS; Ho CT
    Chem Res Toxicol; 2007 Dec; 20(12):1862-70. PubMed ID: 18001060
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quercetin inhibits advanced glycation end product formation by trapping methylglyoxal and glyoxal.
    Li X; Zheng T; Sang S; Lv L
    J Agric Food Chem; 2014 Dec; 62(50):12152-8. PubMed ID: 25412188
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Influence of Quercetin and Its Methylglyoxal Adducts on the Formation of α-Dicarbonyl Compounds in a Lysine/Glucose Model System.
    Liu G; Xia Q; Lu Y; Zheng T; Sang S; Lv L
    J Agric Food Chem; 2017 Mar; 65(10):2233-2239. PubMed ID: 28233503
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Glycation of β-lactoglobulin and antiglycation by genistein in different reactive carbonyl model systems.
    Kong Y; Li X; Zheng T; Lv L
    Food Chem; 2015 Sep; 183():36-42. PubMed ID: 25863607
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Trapping reactions of reactive carbonyl species with tea polyphenols in simulated physiological conditions.
    Lo CY; Li S; Tan D; Pan MH; Sang S; Ho CT
    Mol Nutr Food Res; 2006 Dec; 50(12):1118-28. PubMed ID: 17103374
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Investigation of the Phytochemical Composition, Antioxidant Activity, and Methylglyoxal Trapping Effect of
    Bednarska K; Kuś P; Fecka I
    Molecules; 2020 Dec; 25(24):. PubMed ID: 33317096
    [No Abstract]   [Full Text] [Related]  

  • 11. Mechanism of reactive carbonyl species trapping by hydroxytyrosol under simulated physiological conditions.
    Navarro M; Morales FJ
    Food Chem; 2015 May; 175():92-9. PubMed ID: 25577056
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evaluation of an olive leaf extract as a natural source of antiglycative compounds.
    Navarro M; Morales FJ
    Food Res Int; 2017 Feb; 92():56-63. PubMed ID: 28290298
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of glycation derived from α-dicarbonyl compounds on the in vitro digestibility of β-casein and β-lactoglobulin: A model study with glyoxal, methylglyoxal and butanedione.
    Zhao D; Le TT; Larsen LB; Li L; Qin D; Su G; Li B
    Food Res Int; 2017 Dec; 102():313-322. PubMed ID: 29195953
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reaction of metformin with dicarbonyl compounds. Possible implication in the inhibition of advanced glycation end product formation.
    Ruggiero-Lopez D; Lecomte M; Moinet G; Patereau G; Lagarde M; Wiernsperger N
    Biochem Pharmacol; 1999 Dec; 58(11):1765-73. PubMed ID: 10571251
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Methylglyoxal: its presence and potential scavengers.
    Tan D; Wang Y; Lo CY; Ho CT
    Asia Pac J Clin Nutr; 2008; 17 Suppl 1():261-4. PubMed ID: 18296351
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Induction of 1,2-dicarbonyl compounds, intermediates in the formation of advanced glycation end-products, during heat-sterilization of glucose-based peritoneal dialysis fluids.
    Schalkwijk CG; Posthuma N; ten Brink HJ; ter Wee PM; Teerlink T
    Perit Dial Int; 1999; 19(4):325-33. PubMed ID: 10507813
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identification of the antiglycative components of Hong Dou Shan (Taxus chinensis) leaf tea.
    Sun M; Shen Z; Zhou Q; Wang M
    Food Chem; 2019 Nov; 297():124942. PubMed ID: 31253329
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In Vitro Antiglycation and Methylglyoxal Trapping Effect of Peppermint Leaf (
    Fecka I; Bednarska K; Kowalczyk A
    Molecules; 2023 Mar; 28(6):. PubMed ID: 36985839
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comprehensive analysis of the anti-glycation effect of peanut skin extract.
    Zhao L; Zhu X; Yu Y; He L; Li Y; Zhang L; Liu R
    Food Chem; 2021 Nov; 362():130169. PubMed ID: 34102509
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Kinetics of glycoxidation of bovine serum albumin by methylglyoxal and glyoxal and its prevention by various compounds.
    Sadowska-Bartosz I; Galiniak S; Bartosz G
    Molecules; 2014 Apr; 19(4):4880-96. PubMed ID: 24747646
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.