BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

277 related articles for article (PubMed ID: 29432072)

  • 1. The effect of
    Piroozfar B; Raisali G; Alirezapour B; Mirzaii M
    Int J Radiat Biol; 2018 Apr; 94(4):385-393. PubMed ID: 29432072
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Correlation between energy deposition and molecular damage from Auger electrons: A case study of ultra-low energy (5-18 eV) electron interactions with DNA.
    Rezaee M; Hunting DJ; Sanche L
    Med Phys; 2014 Jul; 41(7):072502. PubMed ID: 24989405
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Calculation of DNA strand breaks due to direct and indirect effects of Auger electrons from incorporated 123I and 125I radionuclides using the Geant4 computer code.
    Raisali G; Mirzakhanian L; Masoudi SF; Semsarha F
    Int J Radiat Biol; 2013 Jan; 89(1):57-64. PubMed ID: 22892102
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quantification of DNA double-strand breaks using Geant4-DNA.
    Chatzipapas KP; Papadimitroulas P; Obeidat M; McConnell KA; Kirby N; Loudos G; Papanikolaou N; Kagadis GC
    Med Phys; 2019 Jan; 46(1):405-413. PubMed ID: 30418675
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Calculated strand breaks from (125)I in coiled DNA.
    Goorley T; Terrissol M; Nikjoo H
    Int J Radiat Biol; 2008 Dec; 84(12):1050-6. PubMed ID: 19061129
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Investigation on the correlation between energy deposition and clustered DNA damage induced by low-energy electrons.
    Liu W; Tan Z; Zhang L; Champion C
    Radiat Environ Biophys; 2018 May; 57(2):179-187. PubMed ID: 29335772
    [TBL] [Abstract][Full Text] [Related]  

  • 7. How to explain the sensitivity of DNA double-strand breaks yield to
    Alcocer Ávila ME; Hindié E; Champion C
    Int J Radiat Biol; 2023; 99(1):103-108. PubMed ID: 35259042
    [TBL] [Abstract][Full Text] [Related]  

  • 8. DNA strand breaks by direct energy deposition by Auger and photo-electrons ejected from DNA constituent atoms following K-shell photoabsorption.
    Watanabe R; Yokoya A; Fujii K; Saito K
    Int J Radiat Biol; 2004; 80(11-12):823-32. PubMed ID: 15764389
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Computer simulation of 57Fe bleomycin auger effects in DNA.
    Terrissol M; Pomplun E; Martin C
    Radiat Prot Dosimetry; 2002; 99(1-4):69-72. PubMed ID: 12194363
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microdosimetric calculations of the direct DNA damage induced by low energy electrons using the Geant4-DNA Monte Carlo code.
    Margis S; Magouni M; Kyriakou I; Georgakilas AG; Incerti S; Emfietzoglou D
    Phys Med Biol; 2020 Feb; 65(4):045007. PubMed ID: 31935692
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Monte Carlo simulation of strand-break induction on plasmid DNA in aqueous solution by monoenergetic electrons.
    Watanabe R; Saito K
    Radiat Environ Biophys; 2002 Sep; 41(3):207-15. PubMed ID: 12373330
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Monte Carlo simulations and measurement of DNA damage from x-ray-triggered auger cascades in iododeoxyuridine (IUdR).
    Karnas SJ; Moiseenko VV; Yu E; Truong P; Battista JJ
    Radiat Environ Biophys; 2001 Sep; 40(3):199-206. PubMed ID: 11783848
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Calculation of the initial DNA damage induced by alpha particles in comparison with protons and electrons using Geant4-DNA.
    Moeini H; Mokari M; Alamatsaz MH; Taleei R
    Int J Radiat Biol; 2020 Jun; 96(6):767-778. PubMed ID: 32052675
    [No Abstract]   [Full Text] [Related]  

  • 14. On the consistency of Monte Carlo track structure DNA damage simulations.
    Pater P; Seuntjens J; El Naqa I; Bernal MA
    Med Phys; 2014 Dec; 41(12):121708. PubMed ID: 25471955
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cellular lethal damage of
    Carrasco-Hernandez J; Ramos-Méndez J; Padilla-Rodal E; Avila-Rodriguez MA
    Front Med (Lausanne); 2023; 10():1253746. PubMed ID: 37841004
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A cell-by-cell Monte Carlo simulation for assessing radiation-induced DNA double strand breaks.
    Lee BH; Wang CC
    Phys Med; 2019 Jun; 62():140-151. PubMed ID: 31153394
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Monte Carlo track-structure for the radionuclide Copper-64: characterization of S-values, nanodosimetry and quantification of direct damage to DNA.
    Carrasco-Hernández J; Ramos-Méndez J; Faddegon B; Jalilian AR; Moranchel M; Ávila-Rodríguez MA
    Phys Med Biol; 2020 Jul; 65(15):155005. PubMed ID: 32303013
    [TBL] [Abstract][Full Text] [Related]  

  • 18. On the biological efficiency of I-123 and I-125 decay on the molecular level.
    Terrissol M; Peudon A; Kummerle E; Pomplun E
    Int J Radiat Biol; 2008 Dec; 84(12):1063-8. PubMed ID: 19061131
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Auger electron-induced double-strand breaks depend on DNA topology.
    Balagurumoorthy P; Chen K; Adelstein SJ; Kassis AI
    Radiat Res; 2008 Jul; 170(1):70-82. PubMed ID: 18582152
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Assessment of Single-and Double-Strand Breaks in DNA Induced by Auger Electrons of Radioisotopes Used in Diagnostic and Therapeutic Applications.
    Moradi MS; Bidabadi BS
    J Med Phys; 2020; 45(4):240-248. PubMed ID: 33953500
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.