BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

216 related articles for article (PubMed ID: 29432111)

  • 1. Toward Drowsiness Detection Using Non-hair-Bearing EEG-Based Brain-Computer Interfaces.
    Wei CS; Wang YT; Lin CT; Jung TP
    IEEE Trans Neural Syst Rehabil Eng; 2018 Feb; 26(2):400-406. PubMed ID: 29432111
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Toward non-hair-bearing brain-computer interfaces for neurocognitive lapse detection.
    Wei CS; Wang YT; Lin CT; Jung TP
    Annu Int Conf IEEE Eng Med Biol Soc; 2015; 2015():6638-41. PubMed ID: 26737815
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A subject-transfer framework for obviating inter- and intra-subject variability in EEG-based drowsiness detection.
    Wei CS; Lin YP; Wang YT; Lin CT; Jung TP
    Neuroimage; 2018 Jul; 174():407-419. PubMed ID: 29578026
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An Online Brain-Computer Interface Based on SSVEPs Measured From Non-Hair-Bearing Areas.
    Wang YT; Nakanishi M; Wang Y; Wei CS; Cheng CK; Jung TP
    IEEE Trans Neural Syst Rehabil Eng; 2017 Jan; 25(1):11-18. PubMed ID: 27254871
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Drowsiness detection using portable wireless EEG.
    Gangadharan K S; Vinod AP
    Comput Methods Programs Biomed; 2022 Feb; 214():106535. PubMed ID: 34861615
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Portable Drowsiness Detection through Use of a Prefrontal Single-Channel Electroencephalogram.
    Ogino M; Mitsukura Y
    Sensors (Basel); 2018 Dec; 18(12):. PubMed ID: 30567347
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Drowsiness Detection with Wireless, User-Generic, Dry Electrode Ear EEG.
    Schwendeman C; Kaveh R; Muller R
    Annu Int Conf IEEE Eng Med Biol Soc; 2022 Jul; 2022():9-12. PubMed ID: 36086111
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Toward practical driving fatigue detection using three frontal EEG channels: a proof-of-concept study.
    Liu X; Li G; Wang S; Wan F; Sun Y; Wang H; Bezerianos A; Li C; Sun Y
    Physiol Meas; 2021 May; 42(4):. PubMed ID: 33780920
    [No Abstract]   [Full Text] [Related]  

  • 9. Monitoring alert and drowsy states by modeling EEG source nonstationarity.
    Hsu SH; Jung TP
    J Neural Eng; 2017 Oct; 14(5):056012. PubMed ID: 28627505
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A portable device for real time drowsiness detection using novel active dry electrode system.
    Tsai PY; Hu W; Kuo TB; Shyu LY
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():3775-8. PubMed ID: 19964814
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Single-Channel Real-Time Drowsiness Detection Based on Electroencephalography.
    Albalawi H; Li X
    Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():98-101. PubMed ID: 30440350
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Brain-computer interfaces using capacitive measurement of visual or auditory steady-state responses.
    Baek HJ; Kim HS; Heo J; Lim YG; Park KS
    J Neural Eng; 2013 Apr; 10(2):024001. PubMed ID: 23448913
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Driver drowsiness detection using the in-ear EEG.
    Taeho Hwang ; Miyoung Kim ; Seunghyeok Hong ; Kwang Suk Park
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():4646-4649. PubMed ID: 28269310
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Hybrid Approach to Detect Driver Drowsiness Utilizing Physiological Signals to Improve System Performance and Wearability.
    Awais M; Badruddin N; Drieberg M
    Sensors (Basel); 2017 Aug; 17(9):. PubMed ID: 28858220
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Design and Validation of a Low-Cost Mobile EEG-Based Brain-Computer Interface.
    Craik A; González-España JJ; Alamir A; Edquilang D; Wong S; Sánchez Rodríguez L; Feng J; Francisco GE; Contreras-Vidal JL
    Sensors (Basel); 2023 Jun; 23(13):. PubMed ID: 37447780
    [No Abstract]   [Full Text] [Related]  

  • 16. A PCA aided cross-covariance scheme for discriminative feature extraction from EEG signals.
    Zarei R; He J; Siuly S; Zhang Y
    Comput Methods Programs Biomed; 2017 Jul; 146():47-57. PubMed ID: 28688489
    [TBL] [Abstract][Full Text] [Related]  

  • 17. EEG-Based Driver Drowsiness Estimation Using Feature Weighted Episodic Training.
    Cui Y; Xu Y; Wu D
    IEEE Trans Neural Syst Rehabil Eng; 2019 Nov; 27(11):2263-2273. PubMed ID: 31603790
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Measuring steady-state visual evoked potentials from non-hair-bearing areas.
    Wang YT; Wang Y; Cheng CK; Jung TP
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():1806-9. PubMed ID: 23366262
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Validation of an EEG-based Neurometric for online monitoring and detection of mental drowsiness while driving.
    Ronca V; Di Flumeri G; Vozzi A; Giorgi A; Arico P; Sciaraffa N; Babiloni F; Borghini G
    Annu Int Conf IEEE Eng Med Biol Soc; 2022 Jul; 2022():3714-3717. PubMed ID: 36086194
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Context-Aware EEG Headset System for Early Detection of Driver Drowsiness.
    Li G; Chung WY
    Sensors (Basel); 2015 Aug; 15(8):20873-93. PubMed ID: 26308002
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.