These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 29432114)

  • 1. Synergistic Elbow Control for a Myoelectric Transhumeral Prosthesis.
    Alshammary NA; Bennett DA; Goldfarb M
    IEEE Trans Neural Syst Rehabil Eng; 2018 Feb; 26(2):468-476. PubMed ID: 29432114
    [TBL] [Abstract][Full Text] [Related]  

  • 2. IMU-Based Wrist Rotation Control of a Transradial Myoelectric Prosthesis.
    Bennett DA; Goldfarb M
    IEEE Trans Neural Syst Rehabil Eng; 2018 Feb; 26(2):419-427. PubMed ID: 28320673
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Control of a myoelectric arm considering cooperated motion of elbow and shoulder joints.
    Kiguchi K; Hayashi Y
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():1616-9. PubMed ID: 22254632
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Targeted muscle reinnervation for real-time myoelectric control of multifunction artificial arms.
    Kuiken TA; Li G; Lock BA; Lipschutz RD; Miller LA; Stubblefield KA; Englehart KB
    JAMA; 2009 Feb; 301(6):619-28. PubMed ID: 19211469
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Upper Limb Prosthesis Control for High-Level Amputees via Myoelectric Recognition of Leg Gestures.
    Lyons KR; Joshi SS; Joshi SS; Lyons KR
    IEEE Trans Neural Syst Rehabil Eng; 2018 May; 26(5):1056-1066. PubMed ID: 29752241
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Multi-Grip Classification-Based Prosthesis Control With Two EMG-IMU Sensors.
    Krasoulis A; Vijayakumar S; Nazarpour K
    IEEE Trans Neural Syst Rehabil Eng; 2020 Feb; 28(2):508-518. PubMed ID: 31841413
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Improved prosthetic hand control with concurrent use of myoelectric and inertial measurements.
    Krasoulis A; Kyranou I; Erden MS; Nazarpour K; Vijayakumar S
    J Neuroeng Rehabil; 2017 Jul; 14(1):71. PubMed ID: 28697795
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Estimation of distal arm joint angles from EMG and shoulder orientation for transhumeral prostheses.
    Akhtar A; Aghasadeghi N; Hargrove L; Bretl T
    J Electromyogr Kinesiol; 2017 Aug; 35():86-94. PubMed ID: 28624687
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Learning from demonstration: Teaching a myoelectric prosthesis with an intact limb via reinforcement learning.
    Vasan G; Pilarski PM
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():1457-1464. PubMed ID: 28814025
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Upper Limb Prosthesis Control: A Hybrid EEG-EMG Scheme for Motion Estimation in Transhumeral Subjects.
    Bakshi K; Pramanik R; Manjunatha M; Kumar CS
    Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():2024-2027. PubMed ID: 30440798
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sensory substitution of elbow proprioception to improve myoelectric control of upper limb prosthesis: experiment on healthy subjects and amputees.
    Guémann M; Halgand C; Bastier A; Lansade C; Borrini L; Lapeyre É; Cattaert D; de Rugy A
    J Neuroeng Rehabil; 2022 Jun; 19(1):59. PubMed ID: 35690860
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Simultaneous Control of 2DOF Upper-Limb Prosthesis With Body Compensations-Based Control: A Multiple Cases Study.
    Legrand M; Marchand C; Richer F; Touillet A; Martinet N; Paysant J; Morel G; Jarrasse N
    IEEE Trans Neural Syst Rehabil Eng; 2022; 30():1745-1754. PubMed ID: 35749322
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Feasibility of using combined EMG and kinematic signals for prosthesis control: A simulation study using a virtual reality environment.
    Blana D; Kyriacou T; Lambrecht JM; Chadwick EK
    J Electromyogr Kinesiol; 2016 Aug; 29():21-7. PubMed ID: 26190031
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Using speech for mode selection in control of multifunctional myoelectric prostheses.
    Fang P; Wei Z; Geng Y; Yao F; Li G
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():3602-5. PubMed ID: 24110509
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Improving bimanual interaction with a prosthesis using semi-autonomous control.
    Volkmar R; Dosen S; Gonzalez-Vargas J; Baum M; Markovic M
    J Neuroeng Rehabil; 2019 Nov; 16(1):140. PubMed ID: 31727087
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Myoelectric prosthesis users and non-disabled individuals wearing a simulated prosthesis exhibit similar compensatory movement strategies.
    Williams HE; Chapman CS; Pilarski PM; Vette AH; Hebert JS
    J Neuroeng Rehabil; 2021 May; 18(1):72. PubMed ID: 33933105
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Functional comparison of upper extremity amputees using myoelectric and conventional prostheses.
    Stein RB; Walley M
    Arch Phys Med Rehabil; 1983 Jun; 64(6):243-8. PubMed ID: 6860093
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Feasibility Evaluation of Online Classification-based Control for Gross Movement in a 2-DoF Prosthetic Arm.
    Yu T; Mohammadi A; Tan Y; Choong P; Oetomo D
    Annu Int Conf IEEE Eng Med Biol Soc; 2023 Jul; 2023():1-4. PubMed ID: 38083488
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sensor fusion and computer vision for context-aware control of a multi degree-of-freedom prosthesis.
    Markovic M; Dosen S; Popovic D; Graimann B; Farina D
    J Neural Eng; 2015 Dec; 12(6):066022. PubMed ID: 26529274
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Assessment of a multigrasp myoelectric control approach for use by transhumeral amputees.
    Alshammary NA; Dalley SA; Goldfarb M
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():968-71. PubMed ID: 23366055
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.