These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 29432116)

  • 1. Improved Prosthetic Control Based on Myoelectric Pattern Recognition via Wavelet-Based De-Noising.
    Maier J; Naber A; Ortiz-Catalan M
    IEEE Trans Neural Syst Rehabil Eng; 2018 Feb; 26(2):506-514. PubMed ID: 29432116
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Classification complexity in myoelectric pattern recognition.
    Nilsson N; Håkansson B; Ortiz-Catalan M
    J Neuroeng Rehabil; 2017 Jul; 14(1):68. PubMed ID: 28693533
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Selective classification for improved robustness of myoelectric control under nonideal conditions.
    Scheme EJ; Englehart KB; Hudgins BS
    IEEE Trans Biomed Eng; 2011 Jun; 58(6):1698-705. PubMed ID: 21317073
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The application study of wavelet packet transformation in the de-noising of dynamic EEG data.
    Li Y; Zhang L; Li B; Wei X; Yan G; Geng X; Jin Z; Xu Y; Wang H; Liu X; Lin R; Wang Q
    Biomed Mater Eng; 2015; 26 Suppl 1():S1067-75. PubMed ID: 26405863
    [TBL] [Abstract][Full Text] [Related]  

  • 5. ECG signal performance de-noising assessment based on threshold tuning of dual-tree wavelet transform.
    El B'charri O; Latif R; Elmansouri K; Abenaou A; Jenkal W
    Biomed Eng Online; 2017 Feb; 16(1):26. PubMed ID: 28173806
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Pattern recognition control outperforms conventional myoelectric control in upper limb patients with targeted muscle reinnervation.
    Hargrove LJ; Lock BA; Simon AM
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():1599-602. PubMed ID: 24110008
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Adaptive Hybrid Classifier for Myoelectric Pattern Recognition Against the Interferences of Outlier Motion, Muscle Fatigue, and Electrode Doffing.
    Ding Q; Zhao X; Han J; Bu C; Wu C
    IEEE Trans Neural Syst Rehabil Eng; 2019 May; 27(5):1071-1080. PubMed ID: 30998472
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interface Prostheses With Classifier-Feedback-Based User Training.
    Fang Y; Zhou D; Li K; Liu H
    IEEE Trans Biomed Eng; 2017 Nov; 64(11):2575-2583. PubMed ID: 28026744
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Adaptive common average filtering for myocontrol applications.
    Rehbaum H; Farina D
    Med Biol Eng Comput; 2015 Feb; 53(2):179-86. PubMed ID: 25388778
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bayesian Filtering of Surface EMG for Accurate Simultaneous and Proportional Prosthetic Control.
    Hofmann D; Jiang N; Vujaklija I; Farina D
    IEEE Trans Neural Syst Rehabil Eng; 2016 Dec; 24(12):1333-1341. PubMed ID: 26600161
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An Alternative Myoelectric Pattern Recognition Approach for the Control of Hand Prostheses: A Case Study of Use in Daily Life by a Dysmelia Subject.
    Mastinu E; Ahlberg J; Lendaro E; Hermansson L; Hakansson B; Ortiz-Catalan M
    IEEE J Transl Eng Health Med; 2018; 6():2600112. PubMed ID: 29637030
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A real-time EMG pattern recognition system based on linear-nonlinear feature projection for a multifunction myoelectric hand.
    Chu JU; Moon I; Mun MS
    IEEE Trans Biomed Eng; 2006 Nov; 53(11):2232-9. PubMed ID: 17073328
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Offline accuracy: A potentially misleading metric in myoelectric pattern recognition for prosthetic control.
    Ortiz-Catalan M; Rouhani F; Branemark R; Hakansson B
    Annu Int Conf IEEE Eng Med Biol Soc; 2015 Aug; 2015():1140-3. PubMed ID: 26736467
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Classification of EMG signals using artificial neural networks for virtual hand prosthesis control.
    Mattioli FE; Lamounier EA; Cardoso A; Soares AB; Andrade AO
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():7254-7. PubMed ID: 22256013
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Control of multifunctional prosthetic hands by processing the electromyographic signal.
    Zecca M; Micera S; Carrozza MC; Dario P
    Crit Rev Biomed Eng; 2002; 30(4-6):459-85. PubMed ID: 12739757
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multiple binary classifications via linear discriminant analysis for improved controllability of a powered prosthesis.
    Hargrove LJ; Scheme EJ; Englehart KB; Hudgins BS
    IEEE Trans Neural Syst Rehabil Eng; 2010 Feb; 18(1):49-57. PubMed ID: 20071277
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Real-time and simultaneous control of artificial limbs based on pattern recognition algorithms.
    Ortiz-Catalan M; Håkansson B; Brånemark R
    IEEE Trans Neural Syst Rehabil Eng; 2014 Jul; 22(4):756-64. PubMed ID: 24710833
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Improved prosthetic hand control with concurrent use of myoelectric and inertial measurements.
    Krasoulis A; Kyranou I; Erden MS; Nazarpour K; Vijayakumar S
    J Neuroeng Rehabil; 2017 Jul; 14(1):71. PubMed ID: 28697795
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Analog Front-Ends comparison in the way of a portable, low-power and low-cost EMG controller based on pattern recognition EMBC 2015.
    Mastinu E; Ortiz-Catalan M; Hakansson B
    Annu Int Conf IEEE Eng Med Biol Soc; 2015; 2015():2111-4. PubMed ID: 26736705
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Speckle noise reduction in ultrasound images using a discrete wavelet transform-based image fusion technique.
    Choi HH; Lee JH; Kim SM; Park SY
    Biomed Mater Eng; 2015; 26 Suppl 1():S1587-97. PubMed ID: 26405924
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.