These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
294 related articles for article (PubMed ID: 29432155)
1. Circadian clock-dependent and -independent posttranscriptional regulation underlies temporal mRNA accumulation in mouse liver. Wang J; Symul L; Yeung J; Gobet C; Sobel J; Lück S; Westermark PO; Molina N; Naef F Proc Natl Acad Sci U S A; 2018 Feb; 115(8):E1916-E1925. PubMed ID: 29432155 [TBL] [Abstract][Full Text] [Related]
2. Transcriptional regulatory logic of the diurnal cycle in the mouse liver. Sobel JA; Krier I; Andersin T; Raghav S; Canella D; Gilardi F; Kalantzi AS; Rey G; Weger B; Gachon F; Dal Peraro M; Hernandez N; Schibler U; Deplancke B; Naef F; PLoS Biol; 2017 Apr; 15(4):e2001069. PubMed ID: 28414715 [TBL] [Abstract][Full Text] [Related]
3. Ribosome profiling reveals the rhythmic liver translatome and circadian clock regulation by upstream open reading frames. Janich P; Arpat AB; Castelo-Szekely V; Lopes M; Gatfield D Genome Res; 2015 Dec; 25(12):1848-59. PubMed ID: 26486724 [TBL] [Abstract][Full Text] [Related]
4. Circadian and feeding rhythms differentially affect rhythmic mRNA transcription and translation in mouse liver. Atger F; Gobet C; Marquis J; Martin E; Wang J; Weger B; Lefebvre G; Descombes P; Naef F; Gachon F Proc Natl Acad Sci U S A; 2015 Nov; 112(47):E6579-88. PubMed ID: 26554015 [TBL] [Abstract][Full Text] [Related]
5. Circadian clock-dependent and -independent rhythmic proteomes implement distinct diurnal functions in mouse liver. Mauvoisin D; Wang J; Jouffe C; Martin E; Atger F; Waridel P; Quadroni M; Gachon F; Naef F Proc Natl Acad Sci U S A; 2014 Jan; 111(1):167-72. PubMed ID: 24344304 [TBL] [Abstract][Full Text] [Related]
6. Rhythmic expression of miR-27b-3p targets the clock gene Bmal1 at the posttranscriptional level in the mouse liver. Zhang W; Wang P; Chen S; Zhang Z; Liang T; Liu C FASEB J; 2016 Jun; 30(6):2151-60. PubMed ID: 26919869 [TBL] [Abstract][Full Text] [Related]
7. Critical role of deadenylation in regulating poly(A) rhythms and circadian gene expression. Yao X; Kojima S; Chen J PLoS Comput Biol; 2020 Apr; 16(4):e1007842. PubMed ID: 32339166 [TBL] [Abstract][Full Text] [Related]
8. Oscillating and stable genome topologies underlie hepatic physiological rhythms during the circadian cycle. Mermet J; Yeung J; Naef F PLoS Genet; 2021 Feb; 17(2):e1009350. PubMed ID: 33524027 [TBL] [Abstract][Full Text] [Related]
9. Genome-wide RNA polymerase II profiles and RNA accumulation reveal kinetics of transcription and associated epigenetic changes during diurnal cycles. Le Martelot G; Canella D; Symul L; Migliavacca E; Gilardi F; Liechti R; Martin O; Harshman K; Delorenzi M; Desvergne B; Herr W; Deplancke B; Schibler U; Rougemont J; Guex N; Hernandez N; Naef F; PLoS Biol; 2012; 10(11):e1001442. PubMed ID: 23209382 [TBL] [Abstract][Full Text] [Related]
10. Coordination of rhythmic RNA synthesis and degradation orchestrates 24- and 12-h RNA expression patterns in mouse fibroblasts. Unruh BA; Weidemann DE; Miao L; Kojima S Proc Natl Acad Sci U S A; 2024 Feb; 121(7):e2314690121. PubMed ID: 38315868 [TBL] [Abstract][Full Text] [Related]
11. Rhythmic Food Intake Drives Rhythmic Gene Expression More Potently than the Hepatic Circadian Clock in Mice. Greenwell BJ; Trott AJ; Beytebiere JR; Pao S; Bosley A; Beach E; Finegan P; Hernandez C; Menet JS Cell Rep; 2019 Apr; 27(3):649-657.e5. PubMed ID: 30995463 [TBL] [Abstract][Full Text] [Related]
12. Coordination between the circadian clock and androgen signaling is required to sustain rhythmic expression of Chen H; Gao L; Yang D; Xiao Y; Zhang M; Li C; Wang A; Jin Y J Biol Chem; 2019 Apr; 294(17):7046-7056. PubMed ID: 30862677 [TBL] [Abstract][Full Text] [Related]
13. Kruppel-like factor KLF10 is a link between the circadian clock and metabolism in liver. Guillaumond F; Gréchez-Cassiau A; Subramaniam M; Brangolo S; Peteri-Brünback B; Staels B; Fiévet C; Spelsberg TC; Delaunay F; Teboul M Mol Cell Biol; 2010 Jun; 30(12):3059-70. PubMed ID: 20385766 [TBL] [Abstract][Full Text] [Related]
14. In the Driver's Seat: The Case for Transcriptional Regulation and Coupling as Relevant Determinants of the Circadian Transcriptome and Proteome in Eukaryotes. Montenegro-Montero A; Larrondo LF J Biol Rhythms; 2016 Feb; 31(1):37-47. PubMed ID: 26446874 [TBL] [Abstract][Full Text] [Related]
15. Differential patterns in the periodicity and dynamics of clock gene expression in mouse liver and stomach. Mazzoccoli G; Francavilla M; Pazienza V; Benegiamo G; Piepoli A; Vinciguerra M; Giuliani F; Yamamoto T; Takumi T Chronobiol Int; 2012 Dec; 29(10):1300-11. PubMed ID: 23131081 [TBL] [Abstract][Full Text] [Related]
16. Rhythmic expression of BMAL1 mRNA is altered in Clock mutant mice: differential regulation in the suprachiasmatic nucleus and peripheral tissues. Oishi K; Fukui H; Ishida N Biochem Biophys Res Commun; 2000 Feb; 268(1):164-71. PubMed ID: 10652231 [TBL] [Abstract][Full Text] [Related]
17. Circadian clock regulation of mRNA translation through eukaryotic elongation factor eEF-2. Caster SZ; Castillo K; Sachs MS; Bell-Pedersen D Proc Natl Acad Sci U S A; 2016 Aug; 113(34):9605-10. PubMed ID: 27506798 [TBL] [Abstract][Full Text] [Related]
18. Low-carbohydrate, high-protein diet affects rhythmic expression of gluconeogenic regulatory and circadian clock genes in mouse peripheral tissues. Oishi K; Uchida D; Itoh N Chronobiol Int; 2012 Aug; 29(7):799-809. PubMed ID: 22823864 [TBL] [Abstract][Full Text] [Related]
19. Nascent-Seq reveals novel features of mouse circadian transcriptional regulation. Menet JS; Rodriguez J; Abruzzi KC; Rosbash M Elife; 2012 Nov; 1():e00011. PubMed ID: 23150795 [TBL] [Abstract][Full Text] [Related]