These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

294 related articles for article (PubMed ID: 29432155)

  • 21. Expression of the gene for Dec2, a basic helix-loop-helix transcription factor, is regulated by a molecular clock system.
    Hamaguchi H; Fujimoto K; Kawamoto T; Noshiro M; Maemura K; Takeda N; Nagai R; Furukawa M; Honma S; Honma K; Kurihara H; Kato Y
    Biochem J; 2004 Aug; 382(Pt 1):43-50. PubMed ID: 15147242
    [TBL] [Abstract][Full Text] [Related]  

  • 22. MicroRNAs shape circadian hepatic gene expression on a transcriptome-wide scale.
    Du NH; Arpat AB; De Matos M; Gatfield D
    Elife; 2014 May; 3():e02510. PubMed ID: 24867642
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Clock-controlled rhythmic transcription: is the clock enough and how does it work?
    Beytebiere JR; Greenwell BJ; Sahasrabudhe A; Menet JS
    Transcription; 2019; 10(4-5):212-221. PubMed ID: 31595813
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Involvement of posttranscriptional regulation of
    Umemura Y; Koike N; Ohashi M; Tsuchiya Y; Meng QJ; Minami Y; Hara M; Hisatomi M; Yagita K
    Proc Natl Acad Sci U S A; 2017 Sep; 114(36):E7479-E7488. PubMed ID: 28827343
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A Novel Bmal1 Mutant Mouse Reveals Essential Roles of the C-Terminal Domain on Circadian Rhythms.
    Park N; Kim HD; Cheon S; Row H; Lee J; Han DH; Cho S; Kim K
    PLoS One; 2015; 10(9):e0138661. PubMed ID: 26394143
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Hepatic, duodenal, and colonic circadian clocks differ in their persistence under conditions of constant light and in their entrainment by restricted feeding.
    Polidarová L; Sládek M; Soták M; Pácha J; Sumová A
    Chronobiol Int; 2011 Apr; 28(3):204-15. PubMed ID: 21452916
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Translational contributions to tissue specificity in rhythmic and constitutive gene expression.
    Castelo-Szekely V; Arpat AB; Janich P; Gatfield D
    Genome Biol; 2017 Jun; 18(1):116. PubMed ID: 28622766
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Time of feeding and the intrinsic circadian clock drive rhythms in hepatic gene expression.
    Vollmers C; Gill S; DiTacchio L; Pulivarthy SR; Le HD; Panda S
    Proc Natl Acad Sci U S A; 2009 Dec; 106(50):21453-8. PubMed ID: 19940241
    [TBL] [Abstract][Full Text] [Related]  

  • 29. ADARB1 catalyzes circadian A-to-I editing and regulates RNA rhythm.
    Terajima H; Yoshitane H; Ozaki H; Suzuki Y; Shimba S; Kuroda S; Iwasaki W; Fukada Y
    Nat Genet; 2017 Jan; 49(1):146-151. PubMed ID: 27893733
    [TBL] [Abstract][Full Text] [Related]  

  • 30. In-vivo quantitative proteomics reveals a key contribution of post-transcriptional mechanisms to the circadian regulation of liver metabolism.
    Robles MS; Cox J; Mann M
    PLoS Genet; 2014 Jan; 10(1):e1004047. PubMed ID: 24391516
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Circadian enhancers coordinate multiple phases of rhythmic gene transcription in vivo.
    Fang B; Everett LJ; Jager J; Briggs E; Armour SM; Feng D; Roy A; Gerhart-Hines Z; Sun Z; Lazar MA
    Cell; 2014 Nov; 159(5):1140-1152. PubMed ID: 25416951
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Regulation of circadian clock transcriptional output by CLOCK:BMAL1.
    Trott AJ; Menet JS
    PLoS Genet; 2018 Jan; 14(1):e1007156. PubMed ID: 29300726
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Rhythmic messenger ribonucleic acid expression of clock genes and adipocytokines in mouse visceral adipose tissue.
    Ando H; Yanagihara H; Hayashi Y; Obi Y; Tsuruoka S; Takamura T; Kaneko S; Fujimura A
    Endocrinology; 2005 Dec; 146(12):5631-6. PubMed ID: 16166217
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Ribosome profiling reveals an important role for translational control in circadian gene expression.
    Jang C; Lahens NF; Hogenesch JB; Sehgal A
    Genome Res; 2015 Dec; 25(12):1836-47. PubMed ID: 26338483
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Circadian control of mRNA polyadenylation dynamics regulates rhythmic protein expression.
    Kojima S; Sher-Chen EL; Green CB
    Genes Dev; 2012 Dec; 26(24):2724-36. PubMed ID: 23249735
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Transcription factor activity rhythms and tissue-specific chromatin interactions explain circadian gene expression across organs.
    Yeung J; Mermet J; Jouffe C; Marquis J; Charpagne A; Gachon F; Naef F
    Genome Res; 2018 Feb; 28(2):182-191. PubMed ID: 29254942
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Rhythmic profiles of cell cycle and circadian clock gene transcripts in mice: a possible association between two periodic systems.
    Weigl Y; Ashkenazi IE; Peleg L
    J Exp Biol; 2013 Jun; 216(Pt 12):2276-82. PubMed ID: 23531816
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Functional D-box sequences reset the circadian clock and drive mRNA rhythms.
    Yoshitane H; Asano Y; Sagami A; Sakai S; Suzuki Y; Okamura H; Iwasaki W; Ozaki H; Fukada Y
    Commun Biol; 2019; 2():300. PubMed ID: 31428688
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Calorie restriction reprograms diurnal rhythms in protein translation to regulate metabolism.
    Makwana K; Gosai N; Poe A; Kondratov RV
    FASEB J; 2019 Mar; 33(3):4473-4489. PubMed ID: 30566374
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Clock gene expression in human and mouse hepatic models shows similar periodicity but different dynamics of variation.
    Mazzoccoli G; Rubino R; Tiberio C; Giuliani F; Vinciguerra M; Oben J; De Cata A; Tarquini R; De Cosmo S; Liu S; Cai Y
    Chronobiol Int; 2016; 33(2):181-90. PubMed ID: 26980725
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.