These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 29432438)

  • 1. Molecular adaptation in Rubisco: Discriminating between convergent evolution and positive selection using mechanistic and classical codon models.
    Parto S; Lartillot N
    PLoS One; 2018; 13(2):e0192697. PubMed ID: 29432438
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evolutionary switch and genetic convergence on rbcL following the evolution of C4 photosynthesis.
    Christin PA; Salamin N; Muasya AM; Roalson EH; Russier F; Besnard G
    Mol Biol Evol; 2008 Nov; 25(11):2361-8. PubMed ID: 18695049
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Kranz and single-cell forms of C4 plants in the subfamily Suaedoideae show kinetic C4 convergence for PEPC and Rubisco with divergent amino acid substitutions.
    Rosnow JJ; Evans MA; Kapralov MV; Cousins AB; Edwards GE; Roalson EH
    J Exp Bot; 2015 Dec; 66(22):7347-58. PubMed ID: 26417023
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A compendium of temperature responses of Rubisco kinetic traits: variability among and within photosynthetic groups and impacts on photosynthesis modeling.
    Galmés J; Hermida-Carrera C; Laanisto L; Niinemets Ü
    J Exp Bot; 2016 Sep; 67(17):5067-91. PubMed ID: 27406782
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modelling (18)O2 and (16)O2 unidirectional fluxes in plants. III: fitting of experimental data by a simple model.
    André MJ
    Biosystems; 2013 Aug; 113(2):104-14. PubMed ID: 23153764
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Stability-activity tradeoffs constrain the adaptive evolution of RubisCO.
    Studer RA; Christin PA; Williams MA; Orengo CA
    Proc Natl Acad Sci U S A; 2014 Feb; 111(6):2223-8. PubMed ID: 24469821
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Prospects for improving CO2 fixation in C3-crops through understanding C4-Rubisco biogenesis and catalytic diversity.
    Sharwood RE; Ghannoum O; Whitney SM
    Curr Opin Plant Biol; 2016 Jun; 31():135-42. PubMed ID: 27131319
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Temperature responses of the Rubisco maximum carboxylase activity across domains of life: phylogenetic signals, trade-offs, and importance for carbon gain.
    Galmés J; Kapralov MV; Copolovici LO; Hermida-Carrera C; Niinemets Ü
    Photosynth Res; 2015 Feb; 123(2):183-201. PubMed ID: 25515770
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Changes in Rubisco kinetics during the evolution of C4 photosynthesis in Flaveria (Asteraceae) are associated with positive selection on genes encoding the enzyme.
    Kapralov MV; Kubien DS; Andersson I; Filatov DA
    Mol Biol Evol; 2011 Apr; 28(4):1491-503. PubMed ID: 21172830
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Deconstructing Kranz anatomy to understand C4 evolution.
    Lundgren MR; Osborne CP; Christin PA
    J Exp Bot; 2014 Jul; 65(13):3357-69. PubMed ID: 24799561
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Plastome-encoded bacterial ribulose-1,5-bisphosphate carboxylase/oxygenase (RubisCO) supports photosynthesis and growth in tobacco.
    Whitney SM; Andrews TJ
    Proc Natl Acad Sci U S A; 2001 Dec; 98(25):14738-43. PubMed ID: 11724961
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Coevolution of amino acid residues in the key photosynthetic enzyme Rubisco.
    Wang M; Kapralov MV; Anisimova M
    BMC Evol Biol; 2011 Sep; 11():266. PubMed ID: 21942934
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electron flow to oxygen in higher plants and algae: rates and control of direct photoreduction (Mehler reaction) and rubisco oxygenase.
    Badger MR; von Caemmerer S; Ruuska S; Nakano H
    Philos Trans R Soc Lond B Biol Sci; 2000 Oct; 355(1402):1433-46. PubMed ID: 11127997
    [TBL] [Abstract][Full Text] [Related]  

  • 14. RuBisCO-like proteins as the enolase enzyme in the methionine salvage pathway: functional and evolutionary relationships between RuBisCO-like proteins and photosynthetic RuBisCO.
    Ashida H; Saito Y; Nakano T; Tandeau de Marsac N; Sekowska A; Danchin A; Yokota A
    J Exp Bot; 2008; 59(7):1543-54. PubMed ID: 18403380
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Beyond RuBisCO: convergent molecular evolution of multiple chloroplast genes in C
    Casola C; Li J
    PeerJ; 2022; 10():e12791. PubMed ID: 35127287
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Did early land plants use carbon-concentrating mechanisms?
    Cowling SA
    Trends Plant Sci; 2013 Mar; 18(3):120-4. PubMed ID: 23102567
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Unicellular C4 photosynthesis in a marine diatom.
    Reinfelder JR; Kraepiel AM; Morel FM
    Nature; 2000 Oct; 407(6807):996-9. PubMed ID: 11069177
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rubisco catalytic adaptation is mostly driven by photosynthetic conditions - Not by phylogenetic constraints.
    Tcherkez G; Farquhar GD
    J Plant Physiol; 2021 Dec; 267():153554. PubMed ID: 34749030
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modelling ¹⁸O₂ and ¹⁶O₂ unidirectional fluxes in plants: II. analysis of rubisco evolution.
    André MJ
    Biosystems; 2011 Feb; 103(2):252-64. PubMed ID: 20950670
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The activity of RubisCO and energy demands for its biosynthesis. Comparative studies with CO
    Ślesak I; Ślesak H
    J Plant Physiol; 2021 Feb; 257():153337. PubMed ID: 33421837
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.