These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 29432438)

  • 21. Cross-species analysis traces adaptation of Rubisco toward optimality in a low-dimensional landscape.
    Savir Y; Noor E; Milo R; Tlusty T
    Proc Natl Acad Sci U S A; 2010 Feb; 107(8):3475-80. PubMed ID: 20142476
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Feedforward non-Michaelis-Menten mechanism for CO(2) uptake by Rubisco: contribution of carbonic anhydrases and photorespiration to optimization of photosynthetic carbon assimilation.
    Igamberdiev AU; Roussel MR
    Biosystems; 2012 Mar; 107(3):158-66. PubMed ID: 22154946
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Temperature responses of Rubisco from Paniceae grasses provide opportunities for improving C
    Sharwood RE; Ghannoum O; Kapralov MV; Gunn LH; Whitney SM
    Nat Plants; 2016 Nov; 2():16186. PubMed ID: 27892943
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A repeat protein links Rubisco to form the eukaryotic carbon-concentrating organelle.
    Mackinder LC; Meyer MT; Mettler-Altmann T; Chen VK; Mitchell MC; Caspari O; Freeman Rosenzweig ES; Pallesen L; Reeves G; Itakura A; Roth R; Sommer F; Geimer S; Mühlhaus T; Schroda M; Goodenough U; Stitt M; Griffiths H; Jonikas MC
    Proc Natl Acad Sci U S A; 2016 May; 113(21):5958-63. PubMed ID: 27166422
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Is C4 photosynthesis less phenotypically plastic than C3 photosynthesis?
    Sage RF; McKown AD
    J Exp Bot; 2006; 57(2):303-17. PubMed ID: 16364950
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Correlative adaptation between Rubisco and CO
    Capó-Bauçà S; Iñiguez C; Aguiló-Nicolau P; Galmés J
    Nat Plants; 2022 Jun; 8(6):706-716. PubMed ID: 35729266
    [TBL] [Abstract][Full Text] [Related]  

  • 27. CO2 and O2 distribution in Rubisco suggests the small subunit functions as a CO2 reservoir.
    van Lun M; Hub JS; van der Spoel D; Andersson I
    J Am Chem Soc; 2014 Feb; 136(8):3165-71. PubMed ID: 24495214
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Surveying the expanding prokaryotic Rubisco multiverse.
    Liu D; Ramya RCS; Mueller-Cajar O
    FEMS Microbiol Lett; 2017 Sep; 364(16):. PubMed ID: 28854711
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Evolution of the biochemistry of the photorespiratory C2 cycle.
    Hagemann M; Fernie AR; Espie GS; Kern R; Eisenhut M; Reumann S; Bauwe H; Weber AP
    Plant Biol (Stuttg); 2013 Jul; 15(4):639-47. PubMed ID: 23198988
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Arabidopsis thaliana ggt1 photorespiratory mutants maintain leaf carbon/nitrogen balance by reducing RuBisCO content and plant growth.
    Dellero Y; Lamothe-Sibold M; Jossier M; Hodges M
    Plant J; 2015 Sep; 83(6):1005-18. PubMed ID: 26216646
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The single-process biochemical reaction of Rubisco: a unified theory and model with the effects of irradiance, CO₂ and rate-limiting step on the kinetics of C₃ and C₄ photosynthesis from gas exchange.
    Farazdaghi H
    Biosystems; 2011 Feb; 103(2):265-84. PubMed ID: 21093535
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Molecular Evolution of rbcL in Orthotrichales (Bryophyta): Site Variation, Adaptive Evolution, and Coevolutionary Patterns of Amino Acid Replacements.
    Bernabeu M; Rosselló JA
    J Mol Evol; 2021 Jun; 89(4-5):225-237. PubMed ID: 33611663
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Understanding metabolite transport and metabolism in C4 plants through RNA-seq.
    Schlüter U; Denton AK; Bräutigam A
    Curr Opin Plant Biol; 2016 Jun; 31():83-90. PubMed ID: 27082280
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Whole-plant growth and N utilization in transgenic rice plants with increased or decreased Rubisco content under different CO2 partial pressures.
    Sudo E; Suzuki Y; Makino A
    Plant Cell Physiol; 2014 Nov; 55(11):1905-11. PubMed ID: 25231963
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Rubisco evolution in C₄ eudicots: an analysis of Amaranthaceae sensu lato.
    Kapralov MV; Smith JA; Filatov DA
    PLoS One; 2012; 7(12):e52974. PubMed ID: 23285238
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Positively selected amino acid replacements within the RuBisCO enzyme of oak trees are associated with ecological adaptations.
    Hermida-Carrera C; Fares MA; Fernández Á; Gil-Pelegrín E; Kapralov MV; Mir A; Molins A; Peguero-Pina JJ; Rocha J; Sancho-Knapik D; Galmés J
    PLoS One; 2017; 12(8):e0183970. PubMed ID: 28859145
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Rubisco content and photosynthesis of leaves at different positions in transgenic rice with an overexpression of RBCS.
    Suzuki Y; Miyamoto T; Yoshizawa R; Mae T; Makino A
    Plant Cell Environ; 2009 Apr; 32(4):417-27. PubMed ID: 19183297
    [TBL] [Abstract][Full Text] [Related]  

  • 38. [Phylogeny and evolution of RubiCo genes in prokaryotes].
    Turova TP; Spiridonova EM
    Mol Biol (Mosk); 2009; 43(5):772-88. PubMed ID: 19899625
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Was photosynthetic RuBisCO recruited by acquisitive evolution from RuBisCO-like proteins involved in sulfur metabolism?
    Ashida H; Danchin A; Yokota A
    Res Microbiol; 2005; 156(5-6):611-8. PubMed ID: 15950120
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Insights into C4 metabolism from comparative deep sequencing.
    Burgess SJ; Hibberd JM
    Curr Opin Plant Biol; 2015 Jun; 25():138-44. PubMed ID: 26051034
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.