BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 29432476)

  • 1. The impact of infrared radiation in flight control in the Australian "firebeetle" Merimna atrata.
    Hinz M; Klein A; Schmitz A; Schmitz H
    PLoS One; 2018; 13(2):e0192865. PubMed ID: 29432476
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bimodal innervation of the infrared organ of Merimna atrata (Coleoptera, Buprestidae) by thermo- and mechanosensory units.
    Schneider ES; Schmitz H
    Arthropod Struct Dev; 2013 Mar; 42(2):135-42. PubMed ID: 23178564
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A new type of infrared organ in the Australian "fire-beetle" Merimna atrata (Coleoptera: Buprestidae).
    Schmitz H; Schmitz A; Bleckmann H
    Naturwissenschaften; 2000 Dec; 87(12):542-5. PubMed ID: 11198195
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Thermomechanical properties of the stimulus transducing cuticle in the infrared organ of Merimna atrata (Coleoptera, Buprestidae).
    Schneider ES; Schmitz H
    J Morphol; 2014 Sep; 275(9):991-1003. PubMed ID: 24753199
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modelling a historic oil-tank fire allows an estimation of the sensitivity of the infrared receptors in pyrophilous Melanophila beetles.
    Schmitz H; Bousack H
    PLoS One; 2012; 7(5):e37627. PubMed ID: 22629433
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Variation in number and differentiation of the abdominal infrared receptors in the Australian 'fire-beetle' Merimna atrata (Coleoptera, Buprestidae).
    Mainz T; Schmitz A; Schmitz H
    Arthropod Struct Dev; 2004 Oct; 33(4):419-30. PubMed ID: 18089048
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electrophysiological characterization of the multipolar thermoreceptors in the "fire-beetle" Merimna atrata and comparison with the infrared sensilla of Melanophila acuminata (both Coleoptera, Buprestidae).
    Schmitz H; Trenner S
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2003 Sep; 189(9):715-22. PubMed ID: 12920547
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Concept of an Active Amplification Mechanism in the Infrared Organ of Pyrophilous Melanophila Beetles.
    Schneider ES; Schmitz A; Schmitz H
    Front Physiol; 2015; 6():391. PubMed ID: 26733883
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Morphology of a thermosensitive multipolar neuron in the infrared organ of Merimna atrata (Coleoptera, Buprestidae).
    Schmitz H; Schmitz A; Bleckmann H
    Arthropod Struct Dev; 2001 Nov; 30(2):99-111. PubMed ID: 18088948
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microfluidic photomechanic infrared receptors in a pyrophilous flat bug.
    Schmitz A; Gebhardt M; Schmitz H
    Naturwissenschaften; 2008 May; 95(5):455-60. PubMed ID: 18246323
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Material properties of photomechanical infrared receptors in pyrophilous Melanophila beetles and Aradus bugs.
    Klocke D; Schmitz H
    Acta Biomater; 2012 Sep; 8(9):3392-9. PubMed ID: 22641103
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Distribution and functional morphology of photomechanic infrared sensilla in flat bugs of the genus Aradus (Heteroptera, Aradidae).
    Schmitz A; Schätzel H; Schmitz H
    Arthropod Struct Dev; 2010 Jan; 39(1):17-25. PubMed ID: 19878737
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Role of outstretched forelegs of flying beetles revealed and demonstrated by remote leg stimulation in free flight.
    Li Y; Cao F; Vo Doan TT; Sato H
    J Exp Biol; 2017 Oct; 220(Pt 19):3499-3507. PubMed ID: 28754717
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Infrared receptors in pyrophilous ("fire loving") insects as model for new un-cooled infrared sensors.
    Klocke D; Schmitz A; Soltner H; Bousack H; Schmitz H
    Beilstein J Nanotechnol; 2011; 2():186-97. PubMed ID: 21977430
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Infrared detection without specialized infrared receptors in the bloodsucking bug Rhodnius prolixus.
    Zopf LM; Lazzari CR; Tichy H
    J Neurophysiol; 2014 Oct; 112(7):1606-15. PubMed ID: 24944223
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electrophysiological characterisation of the infrared organ of the Australian "Little Ash Beetle" Acanthocnemus nigricans (Coleoptera, Acanthocnemidae).
    Kreiss E; Schmitz H; Gebhardt M
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2007 Jul; 193(7):729-39. PubMed ID: 17476511
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ultramicrostructure and microthermomechanics of biological IR detectors: materials properties from a biomimetic perspective.
    Hazel J; Fuchigami N; Gorbunov V; Schmitz H; Stone M; Tsukruk VV
    Biomacromolecules; 2001; 2(1):304-12. PubMed ID: 11749187
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A new type of insect infrared organ of low thermal mass.
    Schmitz H; Schmitz A; Trenner S; Bleckmann H
    Naturwissenschaften; 2002 May; 89(5):226-9. PubMed ID: 12135088
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Infrared radiation from hot cones on cool conifers attracts seed-feeding insects.
    Takács S; Bottomley H; Andreller I; Zaradnik T; Schwarz J; Bennett R; Strong W; Gries G
    Proc Biol Sci; 2009 Feb; 276(1657):649-55. PubMed ID: 18945664
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Behavioural examination of the infrared sensitivity of rattlesnakes (Crotalus atrox).
    Ebert J; Westhoff G
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2006 Sep; 192(9):941-7. PubMed ID: 16788817
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.