These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 29432533)

  • 21. PyBEL: a computational framework for Biological Expression Language.
    Hoyt CT; Konotopez A; Ebeling C; Wren J
    Bioinformatics; 2018 Feb; 34(4):703-704. PubMed ID: 29048466
    [TBL] [Abstract][Full Text] [Related]  

  • 22. NetCoffee: a fast and accurate global alignment approach to identify functionally conserved proteins in multiple networks.
    Hu J; Kehr B; Reinert K
    Bioinformatics; 2014 Feb; 30(4):540-8. PubMed ID: 24336806
    [TBL] [Abstract][Full Text] [Related]  

  • 23. DiffGraph: an R package for identifying gene network rewiring using differential graphical models.
    Zhang XF; Ou-Yang L; Yang S; Hu X; Yan H
    Bioinformatics; 2018 May; 34(9):1571-1573. PubMed ID: 29309511
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Interactive network visualization in Jupyter notebooks: visJS2jupyter.
    Rosenthal SB; Len J; Webster M; Gary A; Birmingham A; Fisch KM
    Bioinformatics; 2018 Jan; 34(1):126-128. PubMed ID: 28968701
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A unified ILP framework for core ancestral genome reconstruction problems.
    Avdeyev P; Alexeev N; Rong Y; Alekseyev MA
    Bioinformatics; 2020 May; 36(10):2993-3003. PubMed ID: 32058559
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A novel algorithm for finding optimal driver nodes to target control complex networks and its applications for drug targets identification.
    Guo WF; Zhang SW; Shi QQ; Zhang CM; Zeng T; Chen L
    BMC Genomics; 2018 Jan; 19(Suppl 1):924. PubMed ID: 29363426
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Structural and practical identifiability analysis of partially observed dynamical models by exploiting the profile likelihood.
    Raue A; Kreutz C; Maiwald T; Bachmann J; Schilling M; Klingmüller U; Timmer J
    Bioinformatics; 2009 Aug; 25(15):1923-9. PubMed ID: 19505944
    [TBL] [Abstract][Full Text] [Related]  

  • 28. TRFBA: an algorithm to integrate genome-scale metabolic and transcriptional regulatory networks with incorporation of expression data.
    Motamedian E; Mohammadi M; Shojaosadati SA; Heydari M
    Bioinformatics; 2017 Apr; 33(7):1057-1063. PubMed ID: 28065897
    [TBL] [Abstract][Full Text] [Related]  

  • 29. BoostGAPFILL: improving the fidelity of metabolic network reconstructions through integrated constraint and pattern-based methods.
    Oyetunde T; Zhang M; Chen Y; Tang Y; Lo C
    Bioinformatics; 2017 Feb; 33(4):608-611. PubMed ID: 27797784
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Inferring transcriptional logic from multiple dynamic experiments.
    Minas G; Jenkins DJ; Rand DA; Finkenstädt B
    Bioinformatics; 2017 Nov; 33(21):3437-3444. PubMed ID: 28666320
    [TBL] [Abstract][Full Text] [Related]  

  • 31. OMEN: network-based driver gene identification using mutual exclusivity.
    Van Daele D; Weytjens B; De Raedt L; Marchal K
    Bioinformatics; 2022 Jun; 38(12):3245-3251. PubMed ID: 35552634
    [TBL] [Abstract][Full Text] [Related]  

  • 32. MIPUP: minimum perfect unmixed phylogenies for multi-sampled tumors via branchings and ILP.
    Husić E; Li X; Hujdurović A; Mehine M; Rizzi R; Mäkinen V; Milanič M; Tomescu AI
    Bioinformatics; 2019 Mar; 35(5):769-777. PubMed ID: 30101335
    [TBL] [Abstract][Full Text] [Related]  

  • 33. gMCS: fast computation of genetic minimal cut sets in large networks.
    Apaolaza I; Valcarcel LV; Planes FJ
    Bioinformatics; 2019 Feb; 35(3):535-537. PubMed ID: 30052768
    [TBL] [Abstract][Full Text] [Related]  

  • 34. PySCeSToolbox: a collection of metabolic pathway analysis tools.
    Christensen CD; Hofmeyr JS; Rohwer JM
    Bioinformatics; 2018 Jan; 34(1):124-125. PubMed ID: 28968872
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Conceptual and computational framework for logical modelling of biological networks deregulated in diseases.
    Montagud A; Traynard P; Martignetti L; Bonnet E; Barillot E; Zinovyev A; Calzone L
    Brief Bioinform; 2019 Jul; 20(4):1238-1249. PubMed ID: 29237040
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Alignment of biological networks by integer linear programming: virus-host protein-protein interaction networks.
    Llabrés M; Riera G; Rosselló F; Valiente G
    BMC Bioinformatics; 2020 Nov; 21(Suppl 6):434. PubMed ID: 33203352
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Extreme learning machines for reverse engineering of gene regulatory networks from expression time series.
    Rubiolo M; Milone DH; Stegmayer G
    Bioinformatics; 2018 Apr; 34(7):1253-1260. PubMed ID: 29182723
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Fuse: multiple network alignment via data fusion.
    Gligorijević V; Malod-Dognin N; Pržulj N
    Bioinformatics; 2016 Apr; 32(8):1195-203. PubMed ID: 26668003
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Granular clustering of de novo protein models.
    Guzenko D; Strelkov SV
    Bioinformatics; 2017 Feb; 33(3):390-396. PubMed ID: 28171609
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Boolean regulatory network reconstruction using literature based knowledge with a genetic algorithm optimization method.
    Dorier J; Crespo I; Niknejad A; Liechti R; Ebeling M; Xenarios I
    BMC Bioinformatics; 2016 Oct; 17(1):410. PubMed ID: 27716031
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.