BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 29432594)

  • 1. Nuclear import of Cdc13 limits chromosomal capping.
    Mersaoui SY; Bonnell E; Wellinger RJ
    Nucleic Acids Res; 2018 Apr; 46(6):2975-2989. PubMed ID: 29432594
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cdc13 OB2 dimerization required for productive Stn1 binding and efficient telomere maintenance.
    Mason M; Wanat JJ; Harper S; Schultz DC; Speicher DW; Johnson FB; Skordalakes E
    Structure; 2013 Jan; 21(1):109-120. PubMed ID: 23177925
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Linear chromosome maintenance in the absence of essential telomere-capping proteins.
    Zubko MK; Lydall D
    Nat Cell Biol; 2006 Jul; 8(7):734-40. PubMed ID: 16767084
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cdc13 N-terminal dimerization, DNA binding, and telomere length regulation.
    Mitchell MT; Smith JS; Mason M; Harper S; Speicher DW; Johnson FB; Skordalakes E
    Mol Cell Biol; 2010 Nov; 30(22):5325-34. PubMed ID: 20837709
    [TBL] [Abstract][Full Text] [Related]  

  • 5. TEN1 is essential for CDC13-mediated telomere capping.
    Xu L; Petreaca RC; Gasparyan HJ; Vu S; Nugent CI
    Genetics; 2009 Nov; 183(3):793-810. PubMed ID: 19752213
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A genomewide suppressor and enhancer analysis of cdc13-1 reveals varied cellular processes influencing telomere capping in Saccharomyces cerevisiae.
    Addinall SG; Downey M; Yu M; Zubko MK; Dewar J; Leake A; Hallinan J; Shaw O; James K; Wilkinson DJ; Wipat A; Durocher D; Lydall D
    Genetics; 2008 Dec; 180(4):2251-66. PubMed ID: 18845848
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structural bases of dimerization of yeast telomere protein Cdc13 and its interaction with the catalytic subunit of DNA polymerase α.
    Sun J; Yang Y; Wan K; Mao N; Yu TY; Lin YC; DeZwaan DC; Freeman BC; Lin JJ; Lue NF; Lei M
    Cell Res; 2011 Feb; 21(2):258-74. PubMed ID: 20877309
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantitative fitness analysis shows that NMD proteins and many other protein complexes suppress or enhance distinct telomere cap defects.
    Addinall SG; Holstein EM; Lawless C; Yu M; Chapman K; Banks AP; Ngo HP; Maringele L; Taschuk M; Young A; Ciesiolka A; Lister AL; Wipat A; Wilkinson DJ; Lydall D
    PLoS Genet; 2011 Apr; 7(4):e1001362. PubMed ID: 21490951
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Survival and growth of yeast without telomere capping by Cdc13 in the absence of Sgs1, Exo1, and Rad9.
    Ngo HP; Lydall D
    PLoS Genet; 2010 Aug; 6(8):e1001072. PubMed ID: 20808892
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Single-stranded telomere-binding protein employs a dual rheostat for binding affinity and specificity that drives function.
    Glustrom LW; Lyon KR; Paschini M; Reyes CM; Parsonnet NV; Toro TB; Lundblad V; Wuttke DS
    Proc Natl Acad Sci U S A; 2018 Oct; 115(41):10315-10320. PubMed ID: 30249661
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Distinct roles for yeast Stn1 in telomere capping and telomerase inhibition.
    Puglisi A; Bianchi A; Lemmens L; Damay P; Shore D
    EMBO J; 2008 Sep; 27(17):2328-39. PubMed ID: 19172739
    [TBL] [Abstract][Full Text] [Related]  

  • 12. MRX protects telomeric DNA at uncapped telomeres of budding yeast cdc13-1 mutants.
    Foster SS; Zubko MK; Guillard S; Lydall D
    DNA Repair (Amst); 2006 Jul; 5(7):840-51. PubMed ID: 16765654
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dynamic DNA Shortening by Telomere-Binding Protein Cdc13.
    Lin YY; Li MH; Chang YC; Fu PY; Ohniwa RL; Li HW; Lin JJ
    J Am Chem Soc; 2021 Apr; 143(15):5815-5825. PubMed ID: 33831300
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The telomere capping complex CST has an unusual stoichiometry, makes multipartite interaction with G-Tails, and unfolds higher-order G-tail structures.
    Lue NF; Zhou R; Chico L; Mao N; Steinberg-Neifach O; Ha T
    PLoS Genet; 2013; 9(1):e1003145. PubMed ID: 23300477
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Site-directed mutagenesis reveals the thermodynamic requirements for single-stranded DNA recognition by the telomere-binding protein Cdc13.
    Anderson EM; Halsey WA; Wuttke DS
    Biochemistry; 2003 Apr; 42(13):3751-8. PubMed ID: 12667066
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The tenacious recognition of yeast telomere sequence by Cdc13 is fully exerted by a single OB-fold domain.
    Lewis KA; Pfaff DA; Earley JN; Altschuler SE; Wuttke DS
    Nucleic Acids Res; 2014 Jan; 42(1):475-84. PubMed ID: 24057216
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The role of Stn1p in Saccharomyces cerevisiae telomere capping can be separated from its interaction with Cdc13p.
    Petreaca RC; Chiu HC; Nugent CI
    Genetics; 2007 Nov; 177(3):1459-74. PubMed ID: 17947422
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fine tuning the level of the Cdc13 telomere-capping protein for maximal chromosome stability performance.
    Mersaoui SY; Wellinger RJ
    Curr Genet; 2019 Feb; 65(1):109-118. PubMed ID: 30066139
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interaction of Saccharomyces Cdc13p with Pol1p, Imp4p, Sir4p and Zds2p is involved in telomere replication, telomere maintenance and cell growth control.
    Hsu CL; Chen YS; Tsai SY; Tu PJ; Wang MJ; Lin JJ
    Nucleic Acids Res; 2004; 32(2):511-21. PubMed ID: 14742666
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rapid Cdc13 turnover and telomere length homeostasis are controlled by Cdk1-mediated phosphorylation of Cdc13.
    Tseng SF; Shen ZJ; Tsai HJ; Lin YH; Teng SC
    Nucleic Acids Res; 2009 Jun; 37(11):3602-11. PubMed ID: 19359360
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.