BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 29432713)

  • 21. Inactivation of chlorophyllase by negatively charged plant membrane lipids.
    Lambers JW; Terpstra W
    Biochim Biophys Acta; 1985 Oct; 831(2):225-35. PubMed ID: 4041468
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Effects of lipid composition on membrane permeabilization by sticholysin I and II, two cytolysins of the sea anemone Stichodactyla helianthus.
    Valcarcel CA; Dalla Serra M; Potrich C; Bernhart I; Tejuca M; Martinez D; Pazos F; Lanio ME; Menestrina G
    Biophys J; 2001 Jun; 80(6):2761-74. PubMed ID: 11371451
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Evidence for two distinct acidic phospholipid-binding sites in cytochrome c.
    Rytömaa M; Kinnunen PK
    J Biol Chem; 1994 Jan; 269(3):1770-4. PubMed ID: 8294426
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Cytochrome c-lipid interactions: new insights from resonance energy transfer.
    Trusova VM; Gorbenko GP; Molotkovsky JG; Kinnunen PK
    Biophys J; 2010 Sep; 99(6):1754-63. PubMed ID: 20858419
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Not only oxidation of cardiolipin affects the affinity of cytochrome C for lipid bilayers.
    Kawai C; Ferreira JC; Baptista MS; Nantes IL
    J Phys Chem B; 2014 Oct; 118(41):11863-72. PubMed ID: 25247479
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Branched phospholipids render lipid vesicles more susceptible to membrane-active peptides.
    Mitchell NJ; Seaton P; Pokorny A
    Biochim Biophys Acta; 2016 May; 1858(5):988-94. PubMed ID: 26514602
    [TBL] [Abstract][Full Text] [Related]  

  • 27. An approach for liposome immobilization using sterically stabilized micelles (SSMs) as a precursor for bio-layer interferometry-based interaction studies.
    Wallner J; Lhota G; Schosserer M; Vorauer-Uhl K
    Colloids Surf B Biointerfaces; 2017 Jun; 154():186-194. PubMed ID: 28340485
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Reversibility of structural rearrangements in lipid membranes induced by adsorption-desorption of a polycation.
    Yaroslavov AA; Efimova AA; Lobyshev VI; Ermakov YA; Kabanov VA
    Membr Cell Biol; 1997; 10(6):683-8. PubMed ID: 9231366
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Molecular Adsorption and Transport at Liposome Surfaces Studied by Molecular Dynamics Simulations and Second Harmonic Generation Spectroscopy.
    Hamal P; Nguyenhuu H; Subasinghege Don V; Kumal RR; Kumar R; McCarley RL; Haber LH
    J Phys Chem B; 2019 Sep; 123(36):7722-7730. PubMed ID: 31407578
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Effects of Lipid Composition on the Entry of Cell-Penetrating Peptide Oligoarginine into Single Vesicles.
    Sharmin S; Islam MZ; Karal MA; Alam Shibly SU; Dohra H; Yamazaki M
    Biochemistry; 2016 Aug; 55(30):4154-65. PubMed ID: 27420912
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Protein surface-distribution and protein-protein interactions in the binding of peripheral proteins to charged lipid membranes.
    Heimburg T; Marsh D
    Biophys J; 1995 Feb; 68(2):536-46. PubMed ID: 7696507
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Dissociation of cytochrome c from liposomes by histone H1. Comparison with basic peptides.
    Rytömaa M; Kinnunen PK
    Biochemistry; 1996 Apr; 35(14):4529-39. PubMed ID: 8605203
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Effect of hydrogen bonding on the rotational and translational dynamics of a headgroup-bound chromophore in bilayer lipid membranes.
    Greiner AJ; Pillman HA; Worden RM; Blanchard GJ; Ofoli RY
    J Phys Chem B; 2009 Oct; 113(40):13263-8. PubMed ID: 19761197
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Lipid-mediated Protein-protein Interactions Modulate Respiration-driven ATP Synthesis.
    Nilsson T; Lundin CR; Nordlund G; Ädelroth P; von Ballmoos C; Brzezinski P
    Sci Rep; 2016 Apr; 6():24113. PubMed ID: 27063297
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Enzymatic action of phospholipase A₂ on liposomal drug delivery systems.
    Hansen AH; Mouritsen OG; Arouri A
    Int J Pharm; 2015 Aug; 491(1-2):49-57. PubMed ID: 26056930
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Peroxidative permeabilization of liposomes induced by cytochrome c/cardiolipin complex.
    Firsov AM; Kotova EA; Korepanova EA; Osipov AN; Antonenko YN
    Biochim Biophys Acta; 2015 Mar; 1848(3):767-74. PubMed ID: 25485477
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A comprehensive lipid binding and activity validation of a cancer-specific peptide-peptoid hybrid PPS1.
    Desai TJ; Udugamasooriya DG
    Biochem Biophys Res Commun; 2017 Apr; 486(2):545-550. PubMed ID: 28322795
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Films of agarose enable rapid formation of giant liposomes in solutions of physiologic ionic strength.
    Horger KS; Estes DJ; Capone R; Mayer M
    J Am Chem Soc; 2009 Feb; 131(5):1810-9. PubMed ID: 19154115
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Quantifying the effects of melittin on liposomes.
    Popplewell JF; Swann MJ; Freeman NJ; McDonnell C; Ford RC
    Biochim Biophys Acta; 2007 Jan; 1768(1):13-20. PubMed ID: 17092481
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Interaction of horse heart and thermus thermophilus type c cytochromes with phospholipid vesicles and hydrophobic surfaces.
    Bernad S; Oellerich S; Soulimane T; Noinville S; Baron MH; Paternostre M; Lecomte S
    Biophys J; 2004 Jun; 86(6):3863-72. PubMed ID: 15189883
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.