BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

219 related articles for article (PubMed ID: 29432761)

  • 1. Application of the Quality by Design Approach to the Freezing Step of Freeze-Drying: Building the Design Space.
    Arsiccio A; Pisano R
    J Pharm Sci; 2018 Jun; 107(6):1586-1596. PubMed ID: 29432761
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fast freeze-drying cycle design and optimization using a PAT based on the measurement of product temperature.
    Bosca S; Barresi AA; Fissore D
    Eur J Pharm Biopharm; 2013 Oct; 85(2):253-62. PubMed ID: 23631849
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Use of subambient differential scanning calorimetry to monitor the frozen-state behavior of blends of excipients for freeze-drying.
    Martini A; Kume S; Crivellente M; Artico R
    PDA J Pharm Sci Technol; 1997; 51(2):62-7. PubMed ID: 9146035
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Freeze-drying using vacuum-induced surface freezing.
    Kramer M; Sennhenn B; Lee G
    J Pharm Sci; 2002 Feb; 91(2):433-43. PubMed ID: 11835203
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Freeze-drying process design by manometric temperature measurement: design of a smart freeze-dryer.
    Tang XC; Nail SL; Pikal MJ
    Pharm Res; 2005 Apr; 22(4):685-700. PubMed ID: 15889467
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Gap-freezing approach for shortening the lyophilization cycle time of pharmaceutical formulations-demonstration of the concept.
    Kuu WY; Doty MJ; Rebbeck CL; Hurst WS; Cho YK
    J Pharm Sci; 2013 Aug; 102(8):2572-88. PubMed ID: 23728733
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Investigation of design space for freeze-drying: use of modeling for primary drying segment of a freeze-drying cycle.
    Koganti VR; Shalaev EY; Berry MR; Osterberg T; Youssef M; Hiebert DN; Kanka FA; Nolan M; Barrett R; Scalzo G; Fitzpatrick G; Fitzgibbon N; Luthra S; Zhang L
    AAPS PharmSciTech; 2011 Sep; 12(3):854-61. PubMed ID: 21710335
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Through-vial impedance spectroscopy of critical events during the freezing stage of the lyophilization cycle: the example of the impact of sucrose on the crystallization of mannitol.
    Arshad MS; Smith G; Polygalov E; Ermolina I
    Eur J Pharm Biopharm; 2014 Aug; 87(3):598-605. PubMed ID: 24825125
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modeling of heat and mass transfer processes for the gap-lyophilization system using the mannitol-trehalose-NaCl formulation.
    Kuu WY; Doty MJ; Nisipeanu E; Rebbeck CL; Cho YK; Smit MH
    J Pharm Sci; 2014 Sep; 103(9):2784-2796. PubMed ID: 24648334
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Impact of freezing procedure and annealing on the physico-chemical properties and the formation of mannitol hydrate in mannitol-sucrose-NaCl formulations.
    Hawe A; Friess W
    Eur J Pharm Biopharm; 2006 Nov; 64(3):316-25. PubMed ID: 16875806
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Monitoring of the freezing stage in a freeze-drying process using IR thermography.
    Colucci D; Maniaci R; Fissore D
    Int J Pharm; 2019 Jul; 566():488-499. PubMed ID: 31175990
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Impact of fast and conservative freeze-drying on product quality of protein-mannitol-sucrose-glycerol lyophilizates.
    Horn J; Schanda J; Friess W
    Eur J Pharm Biopharm; 2018 Jun; 127():342-354. PubMed ID: 29522899
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Controlled nucleation in freeze-drying: effects on pore size in the dried product layer, mass transfer resistance, and primary drying rate.
    Konstantinidis AK; Kuu W; Otten L; Nail SL; Sever RR
    J Pharm Sci; 2011 Aug; 100(8):3453-3470. PubMed ID: 21465488
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Considerations on Protein Stability During Freezing and Its Impact on the Freeze-Drying Cycle: A Design Space Approach.
    Arsiccio A; Giorsello P; Marenco L; Pisano R
    J Pharm Sci; 2020 Jan; 109(1):464-475. PubMed ID: 31647953
    [TBL] [Abstract][Full Text] [Related]  

  • 15. LyoPRONTO: an Open-Source Lyophilization Process Optimization Tool.
    Shivkumar G; Kazarin PS; Strongrich AD; Alexeenko AA
    AAPS PharmSciTech; 2019 Oct; 20(8):328. PubMed ID: 31673810
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Comparison of Controlled Ice Nucleation Techniques for Freeze-Drying of a Therapeutic Antibody.
    Gitter JH; Geidobler R; Presser I; Winter G
    J Pharm Sci; 2018 Nov; 107(11):2748-2754. PubMed ID: 30055225
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mannitol as an Excipient for Lyophilized Injectable Formulations.
    Thakral S; Sonje J; Munjal B; Bhatnagar B; Suryanarayanan R
    J Pharm Sci; 2023 Jan; 112(1):19-35. PubMed ID: 36030846
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Impact of Ice Morphology on Design Space of Pharmaceutical Freeze-Drying.
    Goshima H; Do G; Nakagawa K
    J Pharm Sci; 2016 Jun; 105(6):1920-1933. PubMed ID: 27238489
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Lyophilization Cycle Design for Dual Chamber Cartridges and a Method for Online Process Control: The "DCC LyoMate" Procedure.
    Korpus C; Friess W
    J Pharm Sci; 2017 Aug; 106(8):2077-2087. PubMed ID: 28479354
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Applications of Freezing and Freeze-Drying in Pharmaceutical Formulations.
    Izutsu KI
    Adv Exp Med Biol; 2018; 1081():371-383. PubMed ID: 30288720
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.