These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
546 related articles for article (PubMed ID: 29432984)
1. High strength, biodegradable and cytocompatible alpha tricalcium phosphate-iron composites for temporal reduction of bone fractures. Montufar EB; Casas-Luna M; Horynová M; Tkachenko S; Fohlerová Z; Diaz-de-la-Torre S; Dvořák K; Čelko L; Kaiser J Acta Biomater; 2018 Apr; 70():293-303. PubMed ID: 29432984 [TBL] [Abstract][Full Text] [Related]
2. Microstructure, mechanical characteristics and cell compatibility of β-tricalcium phosphate reinforced with biodegradable Fe-Mg metal phase. Swain SK; Gotman I; Unger R; Kirkpatrick CJ; Gutmanas EY J Mech Behav Biomed Mater; 2016 Jan; 53():434-444. PubMed ID: 26409234 [TBL] [Abstract][Full Text] [Related]
3. Microstructure and biocompatibility of composite biomaterials fabricated from titanium and tricalcium phosphate by spark plasma sintering. Mondal D; Nguyen L; Oh IH; Lee BT J Biomed Mater Res A; 2013 May; 101(5):1489-501. PubMed ID: 23135893 [TBL] [Abstract][Full Text] [Related]
4. The merit of sintered PDLLA/TCP composites in management of bone fracture internal fixation. Lin FH; Chen TM; Lin CP; Lee CJ Artif Organs; 1999 Feb; 23(2):186-94. PubMed ID: 10027889 [TBL] [Abstract][Full Text] [Related]
5. In vitro degradation and biocompatibility of Fe-Pd and Fe-Pt composites fabricated by spark plasma sintering. Huang T; Cheng J; Zheng YF Mater Sci Eng C Mater Biol Appl; 2014 Feb; 35():43-53. PubMed ID: 24411350 [TBL] [Abstract][Full Text] [Related]
6. Strength and fracture mechanism of iron reinforced tricalcium phosphate cermet fabricated by spark plasma sintering. Tkachenko S; Horynová M; Casas-Luna M; Diaz-de-la-Torre S; Dvořák K; Celko L; Kaiser J; Montufar EB J Mech Behav Biomed Mater; 2018 May; 81():16-25. PubMed ID: 29477027 [TBL] [Abstract][Full Text] [Related]
7. Bioresorbable β-TCP-FeAg nanocomposites for load bearing bone implants: High pressure processing, properties and cell compatibility. Swain SK; Gotman I; Unger R; Gutmanas EY Mater Sci Eng C Mater Biol Appl; 2017 Sep; 78():88-95. PubMed ID: 28576063 [TBL] [Abstract][Full Text] [Related]
8. Degradation behaviors and cytocompatibility of Mg/β-tricalcium phosphate composites produced by spark plasma sintering. Narita K; Tian Q; Johnson I; Zhang C; Kobayashi E; Liu H J Biomed Mater Res B Appl Biomater; 2019 Oct; 107(7):2238-2253. PubMed ID: 30707487 [TBL] [Abstract][Full Text] [Related]
9. Effects of Iron on Physical and Mechanical Properties, and Osteoblast Cell Interaction in β-Tricalcium Phosphate. Vahabzadeh S; Bose S Ann Biomed Eng; 2017 Mar; 45(3):819-828. PubMed ID: 27896489 [TBL] [Abstract][Full Text] [Related]
10. In vitro degradation and cell response of calcium carbonate composite ceramic in comparison with other synthetic bone substitute materials. He F; Zhang J; Yang F; Zhu J; Tian X; Chen X Mater Sci Eng C Mater Biol Appl; 2015 May; 50():257-65. PubMed ID: 25746269 [TBL] [Abstract][Full Text] [Related]
11. A new iron calcium phosphate material to improve the osteoconductive properties of a biodegradable ceramic: a study in rabbit calvaria. Manchón A; Hamdan Alkhraisat M; Rueda-Rodriguez C; Prados-Frutos JC; Torres J; Lucas-Aparicio J; Ewald A; Gbureck U; López-Cabarcos E Biomed Mater; 2015 Oct; 10(5):055012. PubMed ID: 26481113 [TBL] [Abstract][Full Text] [Related]
12. Fabrication and characterization of biodegradable zinc matrix composites reinforced by uniformly dispersed beta-tricalcium phosphate via graphene oxide-assisted hetero-agglomeration. Sun X; Yu X; Li W; Chen M; Liu D Mater Sci Eng C Mater Biol Appl; 2021 Nov; 130():112431. PubMed ID: 34702516 [TBL] [Abstract][Full Text] [Related]
13. ZnO, SiO2, and SrO doping in resorbable tricalcium phosphates: Influence on strength degradation, mechanical properties, and in vitro bone-cell material interactions. Bandyopadhyay A; Petersen J; Fielding G; Banerjee S; Bose S J Biomed Mater Res B Appl Biomater; 2012 Nov; 100(8):2203-12. PubMed ID: 22997062 [TBL] [Abstract][Full Text] [Related]
14. 3D porous Ti6Al4V-beta-tricalcium phosphate scaffolds directly fabricated by additive manufacturing. Li J; Yuan H; Chandrakar A; Moroni L; Habibovic P Acta Biomater; 2021 May; 126():496-510. PubMed ID: 33727193 [TBL] [Abstract][Full Text] [Related]
15. Effect of Si and Fe doping on calcium phosphate glass fibre reinforced polycaprolactone bone analogous composites. Mohammadi MS; Ahmed I; Muja N; Almeida S; Rudd CD; Bureau MN; Nazhat SN Acta Biomater; 2012 Apr; 8(4):1616-26. PubMed ID: 22248526 [TBL] [Abstract][Full Text] [Related]
16. Low modulus and bioactive Ti/α-TCP/Ti-mesh composite prepared by spark plasma sintering. Guo Y; Tan Y; Liu Y; Liu S; Zhou R; Tang H Mater Sci Eng C Mater Biol Appl; 2017 Nov; 80():197-206. PubMed ID: 28866157 [TBL] [Abstract][Full Text] [Related]
17. Evaluating the effect of increasing ceramic content on the mechanical properties, material microstructure and degradation of selective laser sintered polycaprolactone/β-tricalcium phosphate materials. Doyle H; Lohfeld S; McHugh P Med Eng Phys; 2015 Aug; 37(8):767-76. PubMed ID: 26054804 [TBL] [Abstract][Full Text] [Related]
18. In vitro and in vivo degradation evaluation of novel iron-bioceramic composites for bone implant applications. Ulum MF; Arafat A; Noviana D; Yusop AH; Nasution AK; Abdul Kadir MR; Hermawan H Mater Sci Eng C Mater Biol Appl; 2014 Mar; 36():336-44. PubMed ID: 24433920 [TBL] [Abstract][Full Text] [Related]
19. The effect of bioactive glass ceramics on the expression of bone-related genes and proteins in vitro. Knabe C; Stiller M; Berger G; Reif D; Gildenhaar R; Howlett CR; Zreiqat H Clin Oral Implants Res; 2005 Feb; 16(1):119-27. PubMed ID: 15642039 [TBL] [Abstract][Full Text] [Related]
20. A self-reinforcing biodegradable implant made of poly(ɛ-caprolactone)/calcium phosphate ceramic composite for craniomaxillofacial fracture fixation. Wu CC; Tsai YF; Hsu LH; Chen JP; Sumi S; Yang KC J Craniomaxillofac Surg; 2016 Sep; 44(9):1333-41. PubMed ID: 27527677 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]