These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 29433080)

  • 1. The impact of loading approach and biological activity on NOM removal by ion exchange resins.
    Winter J; Wray HE; Schulz M; Vortisch R; Barbeau B; Bérubé PR
    Water Res; 2018 May; 134():301-310. PubMed ID: 29433080
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Integrating biological ion exchange with biological activated carbon treatment for drinking water: A novel approach for NOM removal, trihalomethane formation potential, and biological stability.
    Lee Y; Noh JH; Park JW; Yoon SW; Kim SY; Son HJ; Lee W; Maeng SK
    Water Res; 2023 Oct; 245():120598. PubMed ID: 37722140
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Long-term performance of biological ion exchange for the removal of natural organic matter and ammonia from surface waters.
    Amini N; Papineau I; Storck V; Bérubé PR; Mohseni M; Barbeau B
    Water Res; 2018 Dec; 146():1-9. PubMed ID: 30218906
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biological ion exchange as an alternative to biological activated carbon for natural organic matter removal: Impact of temperature and empty bed contact time (EBCT).
    Liu Z; Mills EC; Mohseni M; Barbeau B; Bérubé PR
    Chemosphere; 2022 Feb; 288(Pt 2):132466. PubMed ID: 34610371
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Elucidating the removal of organic micropollutants on biological ion exchange resins.
    Liu Z; Solliec M; Papineau I; Lompe KM; Mohseni M; Bérubé PR; Sauvé S; Barbeau B
    Sci Total Environ; 2022 Feb; 808():152137. PubMed ID: 34864032
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biological ion exchange as an alternative to biological activated carbon for drinking water treatment.
    Liu Z; Lompe KM; Mohseni M; Bérubé PR; Sauvé S; Barbeau B
    Water Res; 2020 Jan; 168():115148. PubMed ID: 31622912
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Selection of anionic exchange resins for removal of natural organic matter (NOM) fractions.
    Cornelissen ER; Moreau N; Siegers WG; Abrahamse AJ; Rietveld LC; Grefte A; Dignum M; Amy G; Wessels LP
    Water Res; 2008 Jan; 42(1-2):413-23. PubMed ID: 17706268
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interactions between Organic Model Compounds and Ion Exchange Resins.
    Finkbeiner P; Moore G; Tseka T; Nkambule TTI; Kock L; Jefferson B; Jarvis P
    Environ Sci Technol; 2019 Aug; 53(16):9734-9743. PubMed ID: 31329424
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Removal of natural organic matter by ion exchange: Comparing regenerated and non-regenerated columns.
    Edgar M; Boyer TH
    Water Res; 2021 Feb; 189():116661. PubMed ID: 33254071
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Impact of anionic ion exchange resins on NOM fractions: Effect on N-DBPs and C-DBPs precursors.
    Bazri MM; Martijn B; Kroesbergen J; Mohseni M
    Chemosphere; 2016 Feb; 144():1988-95. PubMed ID: 26547880
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Understanding the potential for selective natural organic matter removal by ion exchange.
    Finkbeiner P; Redman J; Patriarca V; Moore G; Jefferson B; Jarvis P
    Water Res; 2018 Dec; 146():256-263. PubMed ID: 30278380
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Removal of natural organic matter (NOM) from water by ion exchange - A review.
    Levchuk I; Rueda Márquez JJ; Sillanpää M
    Chemosphere; 2018 Feb; 192():90-104. PubMed ID: 29100126
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The combined influence of hydrophobicity, charge and molecular weight on natural organic matter removal by ion exchange and coagulation.
    Finkbeiner P; Moore G; Pereira R; Jefferson B; Jarvis P
    Chemosphere; 2020 Jan; 238():124633. PubMed ID: 31454747
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Use of polymeric sub-micron ion-exchange resins for removal of lead, copper, zinc, and nickel from natural waters.
    Murray A; Örmeci B
    J Environ Sci (China); 2019 Jan; 75():247-254. PubMed ID: 30473290
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biological ion exchange capable of sulphate-based secondary ion exchange during long-term DOC removal.
    Zimmermann K; Wright J; Bérubé P; Barbeau B; Mohseni M
    Water Res; 2021 May; 196():117036. PubMed ID: 33780887
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Removal of bromide and natural organic matter by anion exchange.
    Hsu S; Singer PC
    Water Res; 2010 Apr; 44(7):2133-40. PubMed ID: 20045170
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Magnetic ion-exchange resin treatment: impact of water type and resin use.
    Mergen MR; Jefferson B; Parsons SA; Jarvis P
    Water Res; 2008 Apr; 42(8-9):1977-88. PubMed ID: 18155745
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sorption of micropollutant estrone to a water treatment ion exchange resin.
    Neale PA; Mastrup M; Borgmann T; Schäfer AI
    J Environ Monit; 2010 Jan; 12(1):311-7. PubMed ID: 20082027
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Simultaneous uptake of NOM and Microcystin-LR by anion exchange resins: Effect of inorganic ions and resin regeneration.
    Dixit F; Barbeau B; Mohseni M
    Chemosphere; 2018 Feb; 192():113-121. PubMed ID: 29100119
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparison of different combined treatment processes to address the source water with high concentration of natural organic matter during snowmelt period.
    Lin P; Zhang X; Wang J; Zeng Y; Liu S; Chen C
    J Environ Sci (China); 2015 Jan; 27():51-8. PubMed ID: 25597662
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.