These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

227 related articles for article (PubMed ID: 29433329)

  • 1. Combined Burst Wave Lithotripsy and Ultrasonic Propulsion for Improved Urinary Stone Fragmentation.
    Zwaschka TA; Ahn JS; Cunitz BW; Bailey MR; Dunmire B; Sorensen MD; Harper JD; Maxwell AD
    J Endourol; 2018 Apr; 32(4):344-349. PubMed ID: 29433329
    [TBL] [Abstract][Full Text] [Related]  

  • 2.
    Ramesh S; Chen TT; Maxwell AD; Cunitz BW; Dunmire B; Thiel J; Williams JC; Gardner A; Liu Z; Metzler I; Harper JD; Sorensen MD; Bailey MR
    J Endourol; 2020 Nov; 34(11):1167-1173. PubMed ID: 32103689
    [No Abstract]   [Full Text] [Related]  

  • 3. First In-Human Burst Wave Lithotripsy for Kidney Stone Comminution: Initial Two Case Studies.
    Harper JD; Metzler I; Hall MK; Chen TT; Maxwell AD; Cunitz BW; Dunmire B; Thiel J; Williams JC; Bailey MR; Sorensen MD
    J Endourol; 2021 Apr; 35(4):506-511. PubMed ID: 32940089
    [No Abstract]   [Full Text] [Related]  

  • 4. Fragmentation of Stones by Burst Wave Lithotripsy in the First 19 Humans.
    Harper JD; Lingeman JE; Sweet RM; Metzler IS; Sunaryo PL; Williams JC; Maxwell AD; Thiel J; Cunitz BW; Dunmire B; Bailey MR; Sorensen MD
    J Urol; 2022 May; 207(5):1067-1076. PubMed ID: 35311351
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Application of novel burst wave lithotripsy and ultrasonic propulsion technology for the treatment of ureteral calculi in a bottlenose dolphin (Tursiops truncatus) and renal calculi in a harbor seal (Phoca vitulina).
    Holmes AE; Chew BH; Laughlin R; Buckley J; Kiewice E; Dancel MJ; Blasko D; Wong VKF; Halawani A; Koo KC; Corl D; Fasolo P; Levy O; Thiel J; Bailey MR; Eichman J; Meegan JM; Haulena M
    Urolithiasis; 2024 Jan; 52(1):21. PubMed ID: 38189835
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fragmentation of urinary calculi in vitro by burst wave lithotripsy.
    Maxwell AD; Cunitz BW; Kreider W; Sapozhnikov OA; Hsi RS; Harper JD; Bailey MR; Sorensen MD
    J Urol; 2015 Jan; 193(1):338-44. PubMed ID: 25111910
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Stone fragility: its therapeutic implications in shock wave lithotripsy of upper urinary tract stones.
    Ansari MS; Gupta NP; Seth A; Hemal AK; Dogra PN; Singh TP
    Int Urol Nephrol; 2003; 35(3):387-92. PubMed ID: 15160546
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Improving Burst Wave Lithotripsy Effectiveness for Small Stones and Fragments by Increasing Frequency: Theoretical Modeling and
    Bailey MR; Maxwell AD; Cao S; Ramesh S; Liu Z; Williams JC; Thiel J; Dunmire B; Colonius T; Kuznetsova E; Kreider W; Sorensen MD; Lingeman JE; Sapozhnikov OA
    J Endourol; 2022 Jul; 36(7):996-1003. PubMed ID: 35229652
    [No Abstract]   [Full Text] [Related]  

  • 9. Evaluation of synchronous twin pulse technique for shock wave lithotripsy: determination of optimal parameters for in vitro stone fragmentation.
    Sheir KZ; Zabihi N; Lee D; Teichman JM; Rehman J; Sundaram CP; Heimbach D; Hesse A; Delvecchio F; Zhong P; Preminger GM; Clayman RV
    J Urol; 2003 Dec; 170(6 Pt 1):2190-4. PubMed ID: 14634376
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Safety and Effectiveness of a Longer Focal Beam and Burst Duration in Ultrasonic Propulsion for Repositioning Urinary Stones and Fragments.
    Janssen KM; Brand TC; Cunitz BW; Wang YN; Simon JC; Starr F; Liggitt HD; Thiel J; Sorensen MD; Harper JD; Bailey MR; Dunmire B
    J Endourol; 2017 Aug; 31(8):793-799. PubMed ID: 28537452
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In vitro investigations of propulsion during laser lithotripsy using video tracking.
    Eisel M; Ströbl S; Pongratz T; Strittmatter F; Sroka R
    Lasers Surg Med; 2018 Apr; 50(4):333-339. PubMed ID: 29266385
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Innovations in Ultrasound Technology in the Management of Kidney Stones.
    Dai JC; Bailey MR; Sorensen MD; Harper JD
    Urol Clin North Am; 2019 May; 46(2):273-285. PubMed ID: 30961860
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of Stone Size and Composition on Ultrasonic Propulsion Ex Vivo.
    Janssen KM; Brand TC; Bailey MR; Cunitz BW; Harper JD; Sorensen MD; Dunmire B
    Urology; 2018 Jan; 111():225-229. PubMed ID: 28964820
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The concentration of Zn, Mg and Mn in calcium oxalate monohydrate stones appears to interfere with their fragility in ESWL therapy.
    Turgut M; Unal I; Berber A; Demir TA; Mutlu F; Aydar Y
    Urol Res; 2008 Feb; 36(1):31-8. PubMed ID: 18176803
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The Impact of Dust and Confinement on Fragmentation of Kidney Stones by Shockwave Lithotripsy in Tissue Phantoms.
    Randad A; Ahn J; Bailey MR; Kreider W; Harper JD; Sorensen MD; Maxwell AD
    J Endourol; 2019 May; 33(5):400-406. PubMed ID: 30595048
    [No Abstract]   [Full Text] [Related]  

  • 16. First Series Using Ultrasonic Propulsion and Burst Wave Lithotripsy to Treat Ureteral Stones.
    Hall MK; Thiel J; Dunmire B; Samson PC; Kessler R; Sunaryo P; Sweet RM; Metzler IS; Chang HC; Gunn M; Dighe M; Anderson L; Popchoi C; Managuli R; Cunitz BW; Burke BH; Ding L; Gutierrez B; Liu Z; Sorensen MD; Wessells H; Bailey MR; Harper JD
    J Urol; 2022 Nov; 208(5):1075-1082. PubMed ID: 36205340
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparison of tissue injury from focused ultrasonic propulsion of kidney stones versus extracorporeal shock wave lithotripsy.
    Connors BA; Evan AP; Blomgren PM; Hsi RS; Harper JD; Sorensen MD; Wang YN; Simon JC; Paun M; Starr F; Cunitz BW; Bailey MR; Lingeman JE
    J Urol; 2014 Jan; 191(1):235-41. PubMed ID: 23917165
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An in vivo demonstration of efficacy and acute safety of burst wave lithotripsy using a porcine model.
    Wang YN; Kreider W; Hunter C; Cunitz BW; Thiel J; Starr F; Dai JC; Nazari Y; Lee D; Williams JC; Bailey MR; Maxwell AD
    Proc Meet Acoust; 2018 Nov; 35(1):. PubMed ID: 32612743
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of Stone Size on the Comminution Process and Efficiency in Shock Wave Lithotripsy.
    Zhang Y; Nault I; Mitran S; Iversen ES; Zhong P
    Ultrasound Med Biol; 2016 Nov; 42(11):2662-2675. PubMed ID: 27515177
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dual-frequency setting for urinary stone fragmentation during shock wave lithotripsy: an in vitro study.
    Han CS; Vetter JM; Endicott R; Chevinsky M; Zafar A; Venkatesh R
    Urolithiasis; 2020 Aug; 48(4):369-375. PubMed ID: 31624905
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.