BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

206 related articles for article (PubMed ID: 29433516)

  • 1. A technical review and evaluation of implantable sensors for hearing devices.
    Calero D; Paul S; Gesing A; Alves F; Cordioli JA
    Biomed Eng Online; 2018 Feb; 17(1):23. PubMed ID: 29433516
    [TBL] [Abstract][Full Text] [Related]  

  • 2. On the design of a MEMS piezoelectric accelerometer coupled to the middle ear as an implantable sensor for hearing devices.
    Gesing AL; Alves FDP; Paul S; Cordioli JA
    Sci Rep; 2018 Mar; 8(1):3920. PubMed ID: 29500435
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Studies of MEMS Acoustic Sensors as Implantable Microphones for Totally Implantable Hearing-Aid Systems.
    Ko WH; Rui Zhang ; Ping Huang ; Jun Guo ; Xuesong Ye ; Young DJ; Megerian CA
    IEEE Trans Biomed Circuits Syst; 2009 Oct; 3(5):277-85. PubMed ID: 23853266
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Implantable microphones as an alternative to external microphones for cochlear implants.
    Mitchell-Innes A; Morse R; Irving R; Begg P
    Cochlear Implants Int; 2017 Nov; 18(6):304-313. PubMed ID: 28889786
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Vibro-Acoustic Hybrid Implantable Microphone for Middle Ear Hearing Aids and Cochlear Implants.
    Seong KW; Mun HJ; Shin DH; Kim JH; Nakajima HH; Puria S; Cho JH
    Sensors (Basel); 2019 Mar; 19(5):. PubMed ID: 30841613
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Packaging Technology for an Implantable Inner Ear MEMS Microphone.
    Prochazka L; Huber A; Dobrev I; Harris F; Dalbert A; Röösli C; Obrist D; Pfiffner F
    Sensors (Basel); 2019 Oct; 19(20):. PubMed ID: 31623215
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [First implantation of a totally implantable electronic hearing aid in patients with inner ear hearing loss].
    Zenner HP; Maassen MM; Plinkert PK; Zimmermann R; Baumann JW; Reischl G; Leysieffer H
    HNO; 1998 Oct; 46(10):844-52. PubMed ID: 9846264
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Influence of the middle ear anatomy on the performance of a membrane sensor in the incudostapedial joint gap.
    Koch M; Seidler H; Hellmuth A; Bornitz M; Lasurashvili N; Zahnert T
    Hear Res; 2013 Jul; 301():35-43. PubMed ID: 23246425
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A laboratory study on a capacitive displacement sensor as an implant microphone in totally implant cochlear hearing aid systems.
    Huang P; Guo J; Megerian CA; Young DJ; Ko WH
    Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():5692-5. PubMed ID: 18003304
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [A totally implantable hearing aid for inner ear deafness: TICA LZ 3001].
    Leysieffer H; Baumann JW; Mayer R; Müller D; Müller G; Schön T; Volz A; Zenner HP
    HNO; 1998 Oct; 46(10):853-63. PubMed ID: 9846265
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A New Trans-Tympanic Microphone Approach for Fully Implantable Hearing Devices.
    Woo ST; Shin DH; Lim HG; Seong KW; Gottlieb P; Puria S; Lee KY; Cho JH
    Sensors (Basel); 2015 Sep; 15(9):22798-810. PubMed ID: 26371007
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biomechanical aspects in implantable microphones and hearing aids and development of a concept with a hydroacoustical transmission.
    Hüttenbrink KB; Zahnert TH; Bornitz M; Hofmann G
    Acta Otolaryngol; 2001 Jan; 121(2):185-9. PubMed ID: 11349775
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The remaining obstacles for a totally implantable cochlear implant.
    Trudel M; Morris DP
    Curr Opin Otolaryngol Head Neck Surg; 2022 Oct; 30(5):298-302. PubMed ID: 36004785
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In-situ sensitivity of a totally-implantable microphone.
    D'hondt C; Wouters J; Verhaert N
    Hear Res; 2020 Sep; 395():108018. PubMed ID: 32712510
    [TBL] [Abstract][Full Text] [Related]  

  • 15. PVDF-Based Piezoelectric Microphone for Sound Detection Inside the Cochlea: Toward Totally Implantable Cochlear Implants.
    Park S; Guan X; Kim Y; Creighton FPX; Wei E; Kymissis IJ; Nakajima HH; Olson ES
    Trends Hear; 2018; 22():2331216518774450. PubMed ID: 29732950
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ultraminiature encapsulated accelerometers as a fully implantable sensor for implantable hearing aids.
    Park WT; O'Connor KN; Chen KL; Mallon JR; Maetani T; Dalal P; Candler RN; Ayanoor-Vitikkate V; Roberson JB; Puria S; Kenny TW
    Biomed Microdevices; 2007 Dec; 9(6):939-49. PubMed ID: 17574533
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mechanical Energy Sensing and Harvesting in Micromachined Polymer-Based Piezoelectric Transducers for Fully Implanted Hearing Systems: A Review.
    Latif R; Noor MM; Yunas J; Hamzah AA
    Polymers (Basel); 2021 Jul; 13(14):. PubMed ID: 34301034
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An Implantable Piezofilm Middle Ear Microphone: Performance in Human Cadaveric Temporal Bones.
    Zhang JZ; Graf L; Banerjee A; Yeiser A; McHugh CI; Kymissis I; Lang JH; Olson ES; Nakajima HH
    J Assoc Res Otolaryngol; 2024 Feb; 25(1):53-61. PubMed ID: 38238525
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Implantable middle ear hearing devices: current state of technology and market challenges.
    Backous DD; Duke W
    Curr Opin Otolaryngol Head Neck Surg; 2006 Oct; 14(5):314-8. PubMed ID: 16974143
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In vivo characterization of piezoelectric transducers for implantable hearing AIDS.
    Javel E; Grant IL; Kroll K
    Otol Neurotol; 2003 Sep; 24(5):784-95. PubMed ID: 14501457
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.