BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

319 related articles for article (PubMed ID: 29433518)

  • 1. Optimization and scale up of microfluidic nanolipomer production method for preclinical and potential clinical trials.
    Gdowski A; Johnson K; Shah S; Gryczynski I; Vishwanatha J; Ranjan A
    J Nanobiotechnology; 2018 Feb; 16(1):12. PubMed ID: 29433518
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Scale up, optimization and stability analysis of Curcumin C3 complex-loaded nanoparticles for cancer therapy.
    Ranjan AP; Mukerjee A; Helson L; Vishwanatha JK
    J Nanobiotechnology; 2012 Aug; 10():38. PubMed ID: 22937885
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Epithelial cell adhesion molecule aptamer functionalized PLGA-lecithin-curcumin-PEG nanoparticles for targeted drug delivery to human colorectal adenocarcinoma cells.
    Li L; Xiang D; Shigdar S; Yang W; Li Q; Lin J; Liu K; Duan W
    Int J Nanomedicine; 2014; 9():1083-96. PubMed ID: 24591829
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microfluidic fabrication and characterization of Sorafenib-loaded lipid-polymer hybrid nanoparticles for controlled drug delivery.
    Tahir N; Madni A; Li W; Correia A; Khan MM; Rahim MA; Santos HA
    Int J Pharm; 2020 May; 581():119275. PubMed ID: 32229283
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Development and characterization of gemcitabine hydrochloride loaded lipid polymer hybrid nanoparticles (LPHNs) using central composite design.
    Yalcin TE; Ilbasmis-Tamer S; Takka S
    Int J Pharm; 2018 Sep; 548(1):255-262. PubMed ID: 29969712
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Passively Targeted Curcumin-Loaded PEGylated PLGA Nanocapsules for Colon Cancer Therapy In Vivo.
    Klippstein R; Wang JT; El-Gogary RI; Bai J; Mustafa F; Rubio N; Bansal S; Al-Jamal WT; Al-Jamal KT
    Small; 2015 Sep; 11(36):4704-22. PubMed ID: 26140363
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synthesis and characterization of tumor-targeted copolymer nanocarrier modified by transferrin.
    Liu R; Wang Y; Li X; Bao W; Xia G; Chen W; Cheng J; Xu Y; Guo L; Chen B
    Drug Des Devel Ther; 2015; 9():2705-19. PubMed ID: 26045659
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Formulation, characterization and evaluation of curcumin-loaded PLGA nanospheres for cancer therapy.
    Mukerjee A; Vishwanatha JK
    Anticancer Res; 2009 Oct; 29(10):3867-75. PubMed ID: 19846921
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microfluidic Manufacturing of Multitargeted PLGA/PEG Nanoparticles for Delivery of Taxane Chemotherapeutics.
    Martins C; Sarmento B
    Methods Mol Biol; 2020; 2059():213-224. PubMed ID: 31435924
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development of bicalutamide-loaded PLGA nanoparticles: preparation, characterization and in-vitro evaluation for the treatment of prostate cancer.
    Ray S; Ghosh Ray S; Mandal S
    Artif Cells Nanomed Biotechnol; 2017 Aug; 45(5):944-954. PubMed ID: 27327352
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The remarkable role of emulsifier and chitosan, dextran and PEG as capping agents in the enhanced delivery of curcumin by nanoparticles in breast cancer cells.
    Sampath M; Pichaimani A; Kumpati P; Sengottuvelan B
    Int J Biol Macromol; 2020 Nov; 162():748-761. PubMed ID: 32585267
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Amphotericin B-loaded polymeric nanoparticles: formulation optimization by factorial design.
    Carraro TC; Khalil NM; Mainardes RM
    Pharm Dev Technol; 2016 Mar; 21(2):140-6. PubMed ID: 25384838
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Preparation, characterization and uptake of PEG-coated, muco-inert nanoparticles in HGC-27 cells, a mucin-producing, gastric-cancer cell line.
    Lin D; Li G; Qin L; Wen Z; Wang J; Sun X
    J Biomed Nanotechnol; 2013 Dec; 9(12):2017-23. PubMed ID: 24266257
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Long circulating chitosan/PEG blended PLGA nanoparticle for tumor drug delivery.
    Parveen S; Sahoo SK
    Eur J Pharmacol; 2011 Nov; 670(2-3):372-83. PubMed ID: 21951969
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The Use of an Efficient Microfluidic Mixing System for Generating Stabilized Polymeric Nanoparticles for Controlled Drug Release.
    Morikawa Y; Tagami T; Hoshikawa A; Ozeki T
    Biol Pharm Bull; 2018; 41(6):899-907. PubMed ID: 29863078
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fabrication of curcumin encapsulated PLGA nanoparticles for improved therapeutic effects in metastatic cancer cells.
    Yallapu MM; Gupta BK; Jaggi M; Chauhan SC
    J Colloid Interface Sci; 2010 Nov; 351(1):19-29. PubMed ID: 20627257
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Design of PLGA nanoparticles for sustained release of hydroxyl-FK866 by microfluidics.
    Bai X; Tang S; Butterworth S; Tirella A
    Biomater Adv; 2023 Nov; 154():213649. PubMed ID: 37820459
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multivariate analysis for the optimization of microfluidics-assisted nanoprecipitation method intended for the loading of small hydrophilic drugs into PLGA nanoparticles.
    Chiesa E; Dorati R; Modena T; Conti B; Genta I
    Int J Pharm; 2018 Jan; 536(1):165-177. PubMed ID: 29175645
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A robust systematic design: Optimization and preparation of polymeric nanoparticles of PLGA for docetaxel intravenous delivery.
    Rafiei P; Haddadi A
    Mater Sci Eng C Mater Biol Appl; 2019 Nov; 104():109950. PubMed ID: 31499976
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Polyethylene glycol triggers the anti-cancer impact of curcumin nanoparticles in sw-1736 thyroid cancer cells.
    Hosseinzadeh S; Nazari H; Esmaeili E; Hatamie S
    J Mater Sci Mater Med; 2021 Aug; 32(9):112. PubMed ID: 34453618
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.