BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

231 related articles for article (PubMed ID: 29433820)

  • 1. Surface enhanced Raman spectroscopy in microchip electrophoresis.
    Tycova A; Gerhardt RF; Belder D
    J Chromatogr A; 2018 Mar; 1541():39-46. PubMed ID: 29433820
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microchip isotachophoresis coupled to surface-enhanced Raman spectroscopy for pharmaceutical analysis.
    Masár M; Troška P; Hradski J; Talian I
    Mikrochim Acta; 2020 Jul; 187(8):448. PubMed ID: 32676809
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Analytical optimization of nanocomposite surface-enhanced Raman spectroscopy/scattering detection in microfluidic separation devices.
    Connatser RM; Cochran M; Harrison RJ; Sepaniak MJ
    Electrophoresis; 2008 Apr; 29(7):1441-50. PubMed ID: 18386301
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Photodeposited silver nanoparticles for on-column surface-enhanced Raman spectrometry detection in capillary electrophoresis.
    Přikryl J; Klepárník K; Foret F
    J Chromatogr A; 2012 Feb; 1226():43-7. PubMed ID: 21831388
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Silver overlayer-modified surface-enhanced Raman scattering-active gold substrates for potential applications in trace detection of biochemical species.
    Ou KL; Hsu TC; Liu YC; Yang KH; Tsai HY
    Anal Chim Acta; 2014 Jan; 806():188-96. PubMed ID: 24331055
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rapid detection of drugs of abuse in saliva using surface enhanced Raman spectroscopy and microfluidics.
    Andreou C; Hoonejani MR; Barmi MR; Moskovits M; Meinhart CD
    ACS Nano; 2013 Aug; 7(8):7157-64. PubMed ID: 23859441
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fabrication of bimetallic microfluidic surface-enhanced Raman scattering sensors on paper by screen printing.
    Qu LL; Song QX; Li YT; Peng MP; Li DW; Chen LX; Fossey JS; Long YT
    Anal Chim Acta; 2013 Aug; 792():86-92. PubMed ID: 23910972
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Recent strategies toward microfluidic-based surface-enhanced Raman spectroscopy.
    Tycova A; Prikryl J; Foret F
    Electrophoresis; 2017 Aug; 38(16):1977-1987. PubMed ID: 28432695
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Low-Cost and Simple Fabrication of Nanoplasmonic Paper for Coupled Chromatography Separation and Surface Enhanced Raman Detection.
    Weatherston JD; Seguban RKO; Hunt D; Wu HJ
    ACS Sens; 2018 Apr; 3(4):852-857. PubMed ID: 29652135
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dielectrophoretic Nanoparticle Aggregation for On-Demand Surface Enhanced Raman Spectroscopy Analysis.
    Salemmilani R; Piorek BD; Mirsafavi RY; Fountain AW; Moskovits M; Meinhart CD
    Anal Chem; 2018 Jul; 90(13):7930-7936. PubMed ID: 29863841
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A fast and low-cost spray method for prototyping and depositing surface-enhanced Raman scattering arrays on microfluidic paper based device.
    Li B; Zhang W; Chen L; Lin B
    Electrophoresis; 2013 Aug; 34(15):2162-8. PubMed ID: 23712933
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multiplexed microfluidic surface-enhanced Raman spectroscopy.
    Abu-Hatab NA; John JF; Oran JM; Sepaniak MJ
    Appl Spectrosc; 2007 Oct; 61(10):1116-22. PubMed ID: 17958963
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Peak capacity and peak capacity per unit time in capillary and microchip zone electrophoresis.
    Foley JP; Blackney DM; Ennis EJ
    J Chromatogr A; 2017 Nov; 1523():80-89. PubMed ID: 28864108
    [TBL] [Abstract][Full Text] [Related]  

  • 14. On-chip ultra-thin layer chromatography and surface enhanced Raman spectroscopy.
    Chen J; Abell J; Huang YW; Zhao Y
    Lab Chip; 2012 Sep; 12(17):3096-102. PubMed ID: 22740336
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optimized core-shell Au@Ag nanoparticles for label-free Raman determination of trace Rhodamine B with cancer risk in food product.
    Wang H; Guo X; Fu S; Yang T; Wen Y; Yang H
    Food Chem; 2015 Dec; 188():137-42. PubMed ID: 26041175
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Research progress on analysis of human papillomavirus by microchip capillary electrophoresis].
    Lin X; Wang C; Lin JM
    Se Pu; 2020 Oct; 38(10):1179-1188. PubMed ID: 34213114
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spatially focused deposition of capillary electrophoresis effluent onto surface-enhanced Raman-active substrates for off-column spectroscopy.
    DeVault GL; Sepaniak MJ
    Electrophoresis; 2001 Jul; 22(11):2303-11. PubMed ID: 11504066
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In situ fabrication of 3D Ag@ZnO nanostructures for microfluidic surface-enhanced Raman scattering systems.
    Xie Y; Yang S; Mao Z; Li P; Zhao C; Cohick Z; Huang PH; Huang TJ
    ACS Nano; 2014 Dec; 8(12):12175-84. PubMed ID: 25402207
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Room-temperature sensor based on surface-enhanced Raman spectroscopy.
    Yang KH; Mai FD; Yu CC; Liu YC
    Analyst; 2014 Oct; 139(20):5164-9. PubMed ID: 25112170
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Metal-polymer nanocomposites for integrated microfluidic separations and surface enhanced Raman spectroscopic detection.
    Connatser RM; Riddle LA; Sepaniak MJ
    J Sep Sci; 2004 Dec; 27(17-18):1545-50. PubMed ID: 15638165
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.