BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

294 related articles for article (PubMed ID: 29433901)

  • 1. Mechanochemical pre-treatment for viable recycling of plastic waste containing haloorganics.
    Cagnetta G; Zhang K; Zhang Q; Huang J; Yu G
    Waste Manag; 2018 May; 75():181-186. PubMed ID: 29433901
    [TBL] [Abstract][Full Text] [Related]  

  • 2. On the role of flame retardants in mechanical recycling of solid plastic waste.
    Delva L; Hubo S; Cardon L; Ragaert K
    Waste Manag; 2018 Dec; 82():198-206. PubMed ID: 30509582
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Recycling of plastic waste: Screening for brominated flame retardants (BFRs).
    Pivnenko K; Granby K; Eriksson E; Astrup TF
    Waste Manag; 2017 Nov; 69():101-109. PubMed ID: 28869101
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Facile characterization of polymer fractions from waste electrical and electronic equipment (WEEE) for mechanical recycling.
    Taurino R; Pozzi P; Zanasi T
    Waste Manag; 2010 Dec; 30(12):2601-7. PubMed ID: 20843675
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Propelling plastics into the circular economy - weeding out the toxics first.
    Leslie HA; Leonards PEG; Brandsma SH; de Boer J; Jonkers N
    Environ Int; 2016 Sep; 94():230-234. PubMed ID: 27262786
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanochemical debromination of waste printed circuit boards with marble sludge in a planetary ball milling process.
    Gandon-Ros G; Aracil I; Gómez-Rico MF; Conesa JA
    J Environ Manage; 2022 Sep; 317():115431. PubMed ID: 35649335
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Novel trends in the thermo-chemical recycling of plastics from WEEE containing brominated flame retardants.
    Charitopoulou MA; Kalogiannis KG; Lappas AA; Achilias DS
    Environ Sci Pollut Res Int; 2021 Nov; 28(42):59190-59213. PubMed ID: 32638300
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The presence and partitioning behavior of flame retardants in waste, leachate, and air particles from Norwegian waste-handling facilities.
    Morin NAO; Andersson PL; Hale SE; Arp HPH
    J Environ Sci (China); 2017 Dec; 62():115-132. PubMed ID: 29289283
    [TBL] [Abstract][Full Text] [Related]  

  • 9. WEEE plastic sorting for bromine essential to enforce EU regulation.
    Hennebert P; Filella M
    Waste Manag; 2018 Jan; 71():390-399. PubMed ID: 29030119
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Formation of PBDD/F from PBDE in electronic waste in recycling processes and under simulated extruding conditions.
    Zennegg M; Schluep M; Streicher-Porte M; Lienemann P; Haag R; Gerecke AC
    Chemosphere; 2014 Dec; 116():34-9. PubMed ID: 24491317
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bromine in plastic consumer products - Evidence for the widespread recycling of electronic waste.
    Turner A; Filella M
    Sci Total Environ; 2017 Dec; 601-602():374-379. PubMed ID: 28570972
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Towards a generic procedure for the detection of relevant contaminants from waste electric and electronic equipment (WEEE) in plastic food-contact materials: a review and selection of key parameters.
    Puype F; Samsonek J; Vilímková V; Kopečková Š; Ratiborská A; Knoop J; Egelkraut-Holtus M; Ortlieb M; Oppermann U
    Food Addit Contam Part A Chem Anal Control Expo Risk Assess; 2017 Oct; 34(10):1767-1783. PubMed ID: 28521663
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of brominated flame retardant on the pyrolysis products of polymers originating in WEEE.
    Charitopoulou MA; Papadopoulou L; Achilias DS
    Environ Sci Pollut Res Int; 2022 Apr; 29(20):29570-29582. PubMed ID: 34312751
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterisation of polymer fractions from waste electrical and electronic equipment (WEEE) and implications for waste management.
    Schlummer M; Gruber L; Mäurer A; Wolz G; van Eldik R
    Chemosphere; 2007 Apr; 67(9):1866-76. PubMed ID: 17207844
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An efficient and fast analytical procedure for the bromine determination in waste electrical and electronic equipment plastics.
    Taurino R; Cannio M; Mafredini T; Pozzi P
    Environ Technol; 2014; 35(21-24):3147-52. PubMed ID: 25244143
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Towards recycling of challenging waste fractions: Identifying flame retardants in plastics with optical spectroscopic techniques.
    Sormunen T; Uusitalo S; Lindström H; Immonen K; Mannila J; Paaso J; Järvinen S
    Waste Manag Res; 2022 Oct; 40(10):1546-1554. PubMed ID: 35331055
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparison of the recyclability of flame-retarded plastics.
    Imai T; Hamm S; Rothenbacher KP
    Environ Sci Technol; 2003 Feb; 37(3):652-6. PubMed ID: 12630485
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Value-added products from thermochemical treatments of contaminated e-waste plastics.
    Das P; Gabriel JP; Tay CY; Lee JM
    Chemosphere; 2021 Apr; 269():129409. PubMed ID: 33388566
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evidence of bad recycling practices: BFRs in children's toys and food-contact articles.
    Guzzonato A; Puype F; Harrad SJ
    Environ Sci Process Impacts; 2017 Jul; 19(7):956-963. PubMed ID: 28636053
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Flame retardant emission from e-waste recycling operation in northern Vietnam: environmental occurrence of emerging organophosphorus esters used as alternatives for PBDEs.
    Matsukami H; Tue NM; Suzuki G; Someya M; Tuyen le H; Viet PH; Takahashi S; Tanabe S; Takigami H
    Sci Total Environ; 2015 May; 514():492-9. PubMed ID: 25701386
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.