BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

227 related articles for article (PubMed ID: 29434033)

  • 1.
    Zhang Y; Gao Y; Zhang H; Zhang J; He F; Hnízda A; Qian M; Liu X; Gocho Y; Pui CH; Cheng T; Wang Q; Yang JJ; Zhu X; Liu X
    Blood; 2018 May; 131(20):2256-2261. PubMed ID: 29434033
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Three novel patient-derived BCR/ABL mutants show different sensitivity to second and third generation tyrosine kinase inhibitors.
    Redaelli S; Mologni L; Rostagno R; Piazza R; Magistroni V; Ceccon M; Viltadi M; Flynn D; Gambacorti-Passerini C
    Am J Hematol; 2012 Nov; 87(11):E125-8. PubMed ID: 23044928
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Acute Lymphoblastic Leukemia Patient with Variant ATF7IP/PDGFRB Fusion and Favorable Response to Tyrosine Kinase Inhibitor Treatment: A Case Report.
    Zhang G; Zhang Y; Wu J; Chen Y; Ma Z
    Am J Case Rep; 2017 Nov; 18():1204-1208. PubMed ID: 29133777
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Beneficial tyrosine kinase inhibitor therapy in a patient with relapsed BCR-ABL1-like acute lymphoblastic leukemia with CCDC88C-PDGFRB fusion.
    Oya S; Morishige S; Ozawa H; Sasaki K; Semba Y; Yamasaki Y; Nakamura T; Aoyama K; Seki R; Mouri F; Osaki K; Miyamoto T; Maeda T; Nagafuji K
    Int J Hematol; 2021 Feb; 113(2):285-289. PubMed ID: 32951102
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Introduction of the T315I gatekeeper mutation of BCR/ABL1 into a Philadelphia chromosome-positive lymphoid leukemia cell line using the CRISPR/Cas9 system.
    Nguyen TTT; Tamai M; Harama D; Kagami K; Kasai S; Watanabe A; Akahane K; Goi K; Inukai T
    Int J Hematol; 2022 Oct; 116(4):534-543. PubMed ID: 35524023
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Drug resistance and BCR-ABL kinase domain mutations in Philadelphia chromosome-positive acute lymphoblastic leukemia from the imatinib to the second-generation tyrosine kinase inhibitor era: The main changes are in the type of mutations, but not in the frequency of mutation involvement.
    Soverini S; De Benedittis C; Papayannidis C; Paolini S; Venturi C; Iacobucci I; Luppi M; Bresciani P; Salvucci M; Russo D; Sica S; Orlandi E; Intermesoli T; Gozzini A; Bonifacio M; Rigolin GM; Pane F; Baccarani M; Cavo M; Martinelli G
    Cancer; 2014 Apr; 120(7):1002-9. PubMed ID: 24382642
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Patients with Philadelphia-positive leukemia with BCR-ABL kinase mutations before allogeneic transplantation predominantly relapse with the same mutation.
    Egan DN; Beppu L; Radich JP
    Biol Blood Marrow Transplant; 2015 Jan; 21(1):184-9. PubMed ID: 25300870
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Oncogene-independent resistance in Philadelphia chromosome - positive (Ph
    Mian AA; Zafar U; Ahmed SMA; Ottmann OG; Lalani EMA
    Neoplasia; 2021 Sep; 23(9):1016-1027. PubMed ID: 34403880
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The role of E255K/V-inclusive mutations in a Philadelphia-positive acute lymphoblastic leukemia with mutation evolution during sequential TKIs therapies: A case report.
    Zhao M; Gui X; Wu Q; Xia L; Wang Y
    Medicine (Baltimore); 2021 May; 100(18):e25579. PubMed ID: 33950935
    [TBL] [Abstract][Full Text] [Related]  

  • 10. ABL kinase mutation and relapse in 4 pediatric Philadelphia chromosome-positive acute lymphoblastic leukemia cases.
    Aoe M; Shimada A; Muraoka M; Washio K; Nakamura Y; Takahashi T; Imada M; Watanabe T; Okada K; Nishiuchi R; Miyamura T; Chayama K; Shibakura M; Oda M; Morishima T
    Int J Hematol; 2014; 99(5):609-15. PubMed ID: 24652384
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sustained Response to Imatinib in a Pediatric Patient with Concurrent Myeloproliferative Disease and Lymphoblastic Lymphoma Associated with a CCDC88C-PDGFRB Fusion Gene.
    Bielorai B; Leitner M; Goldstein G; Mehrian-Shai R; Trakhtenbrot L; Fisher T; Marcu V; Yalon M; Schiby G; Barel O; Cal N; Golan H; Toren A
    Acta Haematol; 2019; 141(2):119-127. PubMed ID: 30726835
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A novel
    Zabriskie MS; Antelope O; Verma AR; Draper LR; Eide CA; Pomicter AD; Tran TH; Druker BJ; Tyner JW; Miles RR; Graham JM; Hwang JY; Varley KE; Toydemir RM; Deininger MW; Raetz EA; O'Hare T
    Haematologica; 2018 Feb; 103(2):e87-e91. PubMed ID: 29284681
    [No Abstract]   [Full Text] [Related]  

  • 13. Expression of spliced oncogenic Ikaros isoforms in Philadelphia-positive acute lymphoblastic leukemia patients treated with tyrosine kinase inhibitors: implications for a new mechanism of resistance.
    Iacobucci I; Lonetti A; Messa F; Cilloni D; Arruga F; Ottaviani E; Paolini S; Papayannidis C; Piccaluga PP; Giannoulia P; Soverini S; Amabile M; Poerio A; Saglio G; Pane F; Berton G; Baruzzi A; Vitale A; Chiaretti S; Perini G; Foà R; Baccarani M; Martinelli G
    Blood; 2008 Nov; 112(9):3847-55. PubMed ID: 18650450
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The role of ponatinib in Philadelphia chromosome-positive acute lymphoblastic leukemia.
    Sanford DS; Kantarjian H; O'Brien S; Jabbour E; Cortes J; Ravandi F
    Expert Rev Anticancer Ther; 2015 Apr; 15(4):365-73. PubMed ID: 25764322
    [TBL] [Abstract][Full Text] [Related]  

  • 15. RUNX1 transactivates BCR-ABL1 expression in Philadelphia chromosome positive acute lymphoblastic leukemia.
    Masuda T; Maeda S; Shimada S; Sakuramoto N; Morita K; Koyama A; Suzuki K; Mitsuda Y; Matsuo H; Kubota H; Kato I; Tanaka K; Takita J; Hirata M; Kataoka TR; Nakahata T; Adachi S; Hirai H; Mizuta S; Naka K; Imai Y; Kimura S; Sugiyama H; Kamikubo Y
    Cancer Sci; 2022 Feb; 113(2):529-539. PubMed ID: 34902205
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ponatinib in the treatment of chronic myeloid leukemia and philadelphia chromosome positive acute lymphoblastic leukemia.
    Pavlovsky C; Chan O; Talati C; Pinilla-Ibarz J
    Future Oncol; 2019 Jan; 15(3):257-269. PubMed ID: 30251548
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Resistance to dasatinib in Philadelphia-positive leukemia patients and the presence or the selection of mutations at residues 315 and 317 in the BCR-ABL kinase domain.
    Soverini S; Colarossi S; Gnani A; Castagnetti F; Rosti G; Bosi C; Paolini S; Rondoni M; Piccaluga PP; Palandri F; Giannoulia P; Marzocchi G; Luatti S; Testoni N; Iacobucci I; Cilloni D; Saglio G; Baccarani M; Martinelli G
    Haematologica; 2007 Mar; 92(3):401-4. PubMed ID: 17339191
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Philadelphia-positive patients who already harbor imatinib-resistant Bcr-Abl kinase domain mutations have a higher likelihood of developing additional mutations associated with resistance to second- or third-line tyrosine kinase inhibitors.
    Soverini S; Gnani A; Colarossi S; Castagnetti F; Abruzzese E; Paolini S; Merante S; Orlandi E; de Matteis S; Gozzini A; Iacobucci I; Palandri F; Gugliotta G; Papayannidis C; Poerio A; Amabile M; Cilloni D; Rosti G; Baccarani M; Martinelli G
    Blood; 2009 Sep; 114(10):2168-71. PubMed ID: 19589924
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Impact of tyrosine kinase inhibitors on minimal residual disease and outcome in childhood Philadelphia chromosome-positive acute lymphoblastic leukemia.
    Jeha S; Coustan-Smith E; Pei D; Sandlund JT; Rubnitz JE; Howard SC; Inaba H; Bhojwani D; Metzger ML; Cheng C; Choi JK; Jacobsen J; Shurtleff SA; Raimondi S; Ribeiro RC; Pui CH; Campana D
    Cancer; 2014 May; 120(10):1514-9. PubMed ID: 24501014
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Management of Philadelphia chromosome-positive acute lymphoblastic leukemia (Ph+ ALL).
    Ottmann OG; Pfeifer H
    Hematology Am Soc Hematol Educ Program; 2009; ():371-81. PubMed ID: 20008223
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.