These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

96 related articles for article (PubMed ID: 29434095)

  • 1. Simple Formation of Cell Arrays Embedded in Hydrogel Sheets and Cubes.
    Sugano T; Sasaki Y; Mizutani F; Yasukawa T
    Anal Sci; 2018; 34(2):127-130. PubMed ID: 29434095
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Negative dielectrophoretic patterning with colloidal particles and encapsulation into a hydrogel.
    Suzuki M; Yasukawa T; Shiku H; Matsue T
    Langmuir; 2007 Mar; 23(7):4088-94. PubMed ID: 17315897
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Process development for cell aggregate arrays encapsulated in a synthetic hydrogel using negative dielectrophoresis.
    Abdallat RG; Ahmad Tajuddin AS; Gould DH; Hughes MP; Fatoyinbo HO; Labeed FH
    Electrophoresis; 2013 Apr; 34(7):1059-67. PubMed ID: 23436271
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Single exposure fabrication and manipulation of 3D hydrogel cell microcarriers.
    Kim LN; Choi SE; Kim J; Kim H; Kwon S
    Lab Chip; 2011 Jan; 11(1):48-51. PubMed ID: 20981360
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Manipulation of microparticles for construction of array patterns by negative dielectrophoresis using multilayered array and grid electrodes.
    Ino K; Shiku H; Ozawa F; Yasukawa T; Matsue T
    Biotechnol Bioeng; 2009 Nov; 104(4):709-18. PubMed ID: 19530080
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Micropatterning of porous silicon Bragg reflectors with poly(ethylene glycol) to fabricate cell microarrays: Towards single cell sensing.
    Piya R; Zhu Y; Soeriyadi AH; Silva SM; Reece PJ; Gooding JJ
    Biosens Bioelectron; 2019 Feb; 127():229-235. PubMed ID: 30622037
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Label-Free On-Chip Selective Extraction of Cell-Aggregate-Laden Microcapsules from Oil into Aqueous Solution with Optical Sensor and Dielectrophoresis.
    Sun M; Durkin P; Li J; Toth TL; He X
    ACS Sens; 2018 Feb; 3(2):410-417. PubMed ID: 29299919
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Extracellular-controlled breast cancer cell formation and growth using non-UV patterned hydrogels via optically-induced electrokinetics.
    Liu N; Liang W; Liu L; Wang Y; Mai JD; Lee GB; Li WJ
    Lab Chip; 2014 Apr; 14(7):1367-76. PubMed ID: 24531214
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rapid Formation of Aggregates with Uniform Numbers of Cells Based on Three-dimensional Dielectrophoresis.
    Yasukawa T; Morishima A; Suzuki M; Yoshioka J; Yoshimoto K; Mizutani F
    Anal Sci; 2019 Aug; 35(8):895-901. PubMed ID: 31006719
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Controllably moving individual living cell in an array by modulating signal phase difference based on dielectrophoresis.
    Guo X; Zhu R
    Biosens Bioelectron; 2015 Jun; 68():529-535. PubMed ID: 25638795
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Freestanding stacked mesh-like hydrogel sheets enable the creation of complex macroscale cellular scaffolds.
    Son J; Bae CY; Park JK
    Biotechnol J; 2016 Mar; 11(4):585-91. PubMed ID: 26627474
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rapid and high-throughput formation of 3D embryoid bodies in hydrogels using the dielectrophoresis technique.
    Ahadian S; Yamada S; Ramón-Azcón J; Ino K; Shiku H; Khademhosseini A; Matsue T
    Lab Chip; 2014 Oct; 14(19):3690-4. PubMed ID: 25082412
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Liquid Crystal Droplet-Embedded Biopolymer Hydrogel Sheets for Biosensor Applications.
    Deng J; Liang W; Fang J
    ACS Appl Mater Interfaces; 2016 Feb; 8(6):3928-32. PubMed ID: 26808341
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fabrication of PEG hydrogel microwell arrays for high-throughput single stem cell culture and analysis.
    Kobel SA; Lutolf MP
    Methods Mol Biol; 2012; 811():101-12. PubMed ID: 22042675
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Photopatterning of Hydrogel Microarrays in Closed Microchips.
    Gumuscu B; Bomer JG; van den Berg A; Eijkel JC
    Biomacromolecules; 2015 Dec; 16(12):3802-10. PubMed ID: 26558488
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A microfluidic device for continuous manipulation of biological cells using dielectrophoresis.
    Das D; Biswas K; Das S
    Med Eng Phys; 2014 Jun; 36(6):726-31. PubMed ID: 24388100
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dielectrophoretic chip with multilayer electrodes and micro-cavity array for trapping and programmably releasing single cells.
    Chuang CH; Huang YW; Wu YT
    Biomed Microdevices; 2012 Apr; 14(2):271-8. PubMed ID: 22072154
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hydrogel Printing Based on UV-Induced Projection for Cell-Based Microarray Fabrication.
    Yang W; Yu H; Wang Y; Liu L
    Methods Mol Biol; 2018; 1771():97-105. PubMed ID: 29633207
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hydrogel Droplet Microfluidics for High-Throughput Single Molecule/Cell Analysis.
    Zhu Z; Yang CJ
    Acc Chem Res; 2017 Jan; 50(1):22-31. PubMed ID: 28029779
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Micropillar arrays enabling single microbial cell encapsulation in hydrogels.
    Park KJ; Lee KG; Seok S; Choi BG; Lee MK; Park TJ; Park JY; Kim DH; Lee SJ
    Lab Chip; 2014 Jun; 14(11):1873-9. PubMed ID: 24706072
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.