BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

228 related articles for article (PubMed ID: 29434200)

  • 1. Sustained micellar delivery via inducible transitions in nanostructure morphology.
    Karabin NB; Allen S; Kwon HK; Bobbala S; Firlar E; Shokuhfar T; Shull KR; Scott EA
    Nat Commun; 2018 Feb; 9(1):624. PubMed ID: 29434200
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Employing bicontinuous-to-micellar transitions in nanostructure morphology for on-demand photo-oxidation responsive cytosolic delivery and off-on cytotoxicity.
    Bobbala S; Allen SD; Yi S; Vincent M; Frey M; Karabin NB; Scott EA
    Nanoscale; 2020 Mar; 12(9):5332-5340. PubMed ID: 32090217
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Magnetic Nanostructure-Loaded Bicontinuous Nanospheres Support Multicargo Intracellular Delivery and Oxidation-Responsive Morphological Transitions.
    Modak M; Bobbala S; Lescott C; Liu YG; Nandwana V; Dravid VP; Scott EA
    ACS Appl Mater Interfaces; 2020 Dec; 12(50):55584-55595. PubMed ID: 33259182
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nanomicellar formulations for sustained drug delivery: strategies and underlying principles.
    Trivedi R; Kompella UB
    Nanomedicine (Lond); 2010 Apr; 5(3):485-505. PubMed ID: 20394539
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Two-photon absorbing block copolymer as a nanocarrier for porphyrin: energy transfer and singlet oxygen generation in micellar aqueous solution.
    Chen CY; Tian Y; Cheng YJ; Young AC; Ka JW; Jen AK
    J Am Chem Soc; 2007 Jun; 129(23):7220-1. PubMed ID: 17506557
    [No Abstract]   [Full Text] [Related]  

  • 6. Micellar emulsions composed of mPEG-PCL/MCT as novel nanocarriers for systemic delivery of genistein: a comparative study with micelles.
    Zhang T; Wang H; Ye Y; Zhang X; Wu B
    Int J Nanomedicine; 2015; 10():6175-84. PubMed ID: 26491290
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hydrogen-bonding layer-by-layer-assembled biodegradable polymeric micelles as drug delivery vehicles from surfaces.
    Kim BS; Park SW; Hammond PT
    ACS Nano; 2008 Feb; 2(2):386-92. PubMed ID: 19206641
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A structure-property relationship study of the well-defined telodendrimers to improve hemocompatibility of nanocarriers for anticancer drug delivery.
    Shi C; Yuan D; Nangia S; Xu G; Lam KS; Luo J
    Langmuir; 2014 Jun; 30(23):6878-88. PubMed ID: 24849780
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Highly efficient drug delivery systems based on functional supramolecular polymers: In vitro evaluation.
    Cheng CC; Chang FC; Kao WY; Hwang SM; Liao LC; Chang YJ; Liang MC; Chen JK; Lee DJ
    Acta Biomater; 2016 Mar; 33():194-202. PubMed ID: 26796210
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Co-delivery of doxorubicin and (131)I by thermosensitive micellar-hydrogel for enhanced in situ synergetic chemoradiotherapy.
    Huang P; Zhang Y; Wang W; Zhou J; Sun Y; Liu J; Kong D; Liu J; Dong A
    J Control Release; 2015 Dec; 220(Pt A):456-464. PubMed ID: 26562684
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Polymer Self-Assembled Nanostructures as Innovative Drug Nanocarrier Platforms.
    Pippa N; Pispas S; Demetzos C
    Curr Pharm Des; 2016; 22(19):2788-95. PubMed ID: 26898736
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Self-assembly of block copolymers.
    Mai Y; Eisenberg A
    Chem Soc Rev; 2012 Sep; 41(18):5969-85. PubMed ID: 22776960
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of block copolymer properties on nanocarrier protection from in vivo clearance.
    D'Addio SM; Saad W; Ansell SM; Squiers JJ; Adamson DH; Herrera-Alonso M; Wohl AR; Hoye TR; Macosko CW; Mayer LD; Vauthier C; Prud'homme RK
    J Control Release; 2012 Aug; 162(1):208-17. PubMed ID: 22732478
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An Injectable Hydrogel Platform for Sustained Delivery of Anti-inflammatory Nanocarriers and Induction of Regulatory T Cells in Atherosclerosis.
    Yi S; Karabin NB; Zhu J; Bobbala S; Lyu H; Li S; Liu Y; Frey M; Vincent M; Scott EA
    Front Bioeng Biotechnol; 2020; 8():542. PubMed ID: 32582667
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sugar-based amphiphilic polymers for biomedical applications: from nanocarriers to therapeutics.
    Gu L; Faig A; Abdelhamid D; Uhrich K
    Acc Chem Res; 2014 Oct; 47(10):2867-77. PubMed ID: 25141069
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Controlled drug delivery attributes of co-polymer micelles and xanthan-O-carboxymethyl hydrogel particles.
    Maiti S; Mukherjee S
    Int J Biol Macromol; 2014 Sep; 70():37-43. PubMed ID: 24954271
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Novel NQO1 Enzyme-Responsive Polyurethane Nanocarrier for Redox-Triggered Intracellular Drug Release.
    Xie J; Tian S; Zhang H; Feng C; Han Y; Dai H; Yan L
    Biomacromolecules; 2023 May; 24(5):2225-2236. PubMed ID: 37040694
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparison between novel star-like redox-sensitive amphiphilic block copolymer and its linear counterpart copolymer as nanocarriers for doxorubicin.
    Murjan S; Saeedi S; Nabid MR
    Drug Dev Ind Pharm; 2020 Apr; 46(4):646-658. PubMed ID: 32208035
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Stimulus-Responsive Degradable Polylactide-Based Block Copolymer Nanoassemblies for Controlled/Enhanced Drug Delivery.
    Bawa KK; Oh JK
    Mol Pharm; 2017 Aug; 14(8):2460-2474. PubMed ID: 28493712
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Novel polymeric micelles for drug delivery: Material characterization and formulation screening.
    Janas C; Mostaphaoui Z; Schmiederer L; Bauer J; Wacker MG
    Int J Pharm; 2016 Jul; 509(1-2):197-207. PubMed ID: 27234698
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.