BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

322 related articles for article (PubMed ID: 29434313)

  • 1. Distributions of phytoplankton carbohydrate, protein and lipid in the world oceans from satellite ocean colour.
    Roy S
    ISME J; 2018 Jun; 12(6):1457-1472. PubMed ID: 29434313
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Algorithmic procedure for retrieving calorific contents of marine phytoplankton from space.
    Roy S
    MethodsX; 2021; 8():101579. PubMed ID: 35004213
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Trends in ocean colour and chlorophyll concentration from 1889 to 2000, worldwide.
    Wernand MR; van der Woerd HJ; Gieskes WW
    PLoS One; 2013; 8(6):e63766. PubMed ID: 23776435
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High latitude Southern Ocean phytoplankton have distinctive bio-optical properties.
    Robinson CM; Huot Y; Schuback N; Ryan-Keogh TJ; Thomalla SJ; Antoine D
    Opt Express; 2021 Jul; 29(14):21084-21112. PubMed ID: 34265904
    [TBL] [Abstract][Full Text] [Related]  

  • 5. From silk to satellite: half a century of ocean colour anomalies in the Northeast Atlantic.
    Raitsos DE; Pradhan Y; Lavender SJ; Hoteit I; McQuatters-Gollop A; Reid PC; Richardson AJ
    Glob Chang Biol; 2014 Jul; 20(7):2117-23. PubMed ID: 24804626
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chlorophyll biomass in the global oceans: satellite retrieval using inherent optical properties.
    Lyon PE; Hoge FE; Wright CW; Swift RN; Yungel JK
    Appl Opt; 2004 Nov; 43(31):5886-92. PubMed ID: 15540447
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Assimilating satellite ocean-colour observations into oceanic ecosystem models.
    Hemmings JC; Srokosz MA; Challenor P; Fasham MJ
    Philos Trans A Math Phys Eng Sci; 2003 Jan; 361(1802):33-9. PubMed ID: 12626236
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Climate-driven trends in contemporary ocean productivity.
    Behrenfeld MJ; O'Malley RT; Siegel DA; McClain CR; Sarmiento JL; Feldman GC; Milligan AJ; Falkowski PG; Letelier RM; Boss ES
    Nature; 2006 Dec; 444(7120):752-5. PubMed ID: 17151666
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evaluation of diagnostic pigments to estimate phytoplankton size classes.
    Chase AP; Kramer SJ; Haëntjens N; Boss ES; Karp-Boss L; Edmondson M; Graff JR
    Limnol Oceanogr Methods; 2020 Oct; 18(10):570-584. PubMed ID: 33132771
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phytoplankton. The fate of photons absorbed by phytoplankton in the global ocean.
    Lin H; Kuzminov FI; Park J; Lee S; Falkowski PG; Gorbunov MY
    Science; 2016 Jan; 351(6270):264-7. PubMed ID: 26743625
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Particle backscattering as a function of chlorophyll and phytoplankton size structure in the open-ocean.
    Brewin RJ; Dall'Olmo G; Sathyendranath S; Hardman-Mountford NJ
    Opt Express; 2012 Jul; 20(16):17632-52. PubMed ID: 23038316
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Inversion of spectral absorption coefficients to infer phytoplankton size classes, chlorophyll concentration, and detrital matter.
    Zhang X; Huot Y; Bricaud A; Sosik HM
    Appl Opt; 2015 Jun; 54(18):5805-16. PubMed ID: 26193033
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Perspectives on empirical approaches for ocean color remote sensing of chlorophyll in a changing climate.
    Dierssen HM
    Proc Natl Acad Sci U S A; 2010 Oct; 107(40):17073-8. PubMed ID: 20861445
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modeling ocean surface chlorophyll-a concentration from ocean color remote sensing reflectance in global waters using machine learning.
    Kolluru S; Tiwari SP
    Sci Total Environ; 2022 Oct; 844():157191. PubMed ID: 35810889
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Latitudinal variation in virus-induced mortality of phytoplankton across the North Atlantic Ocean.
    Mojica KD; Huisman J; Wilhelm SW; Brussaard CP
    ISME J; 2016 Feb; 10(2):500-13. PubMed ID: 26262815
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The Influence of Temperature and Community Structure on Light Absorption by Phytoplankton in the North Atlantic.
    J W Brewin R; Ciavatta S; Sathyendranath S; Skákala J; Bruggeman J; Ford D; Platt T
    Sensors (Basel); 2019 Sep; 19(19):. PubMed ID: 31561600
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bio-optical evidence for increasing
    Orkney A; Platt T; Narayanaswamy BE; Kostakis I; Bouman HA
    Philos Trans A Math Phys Eng Sci; 2020 Oct; 378(2181):20190357. PubMed ID: 32862820
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Discrimination of phytoplankton functional groups using an ocean reflectance inversion model.
    Werdell PJ; Roesler CS; Goes JI
    Appl Opt; 2014 Aug; 53(22):4833-49. PubMed ID: 25090312
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Correcting non-photochemical quenching of Saildrone chlorophyll-a fluorescence for evaluation of satellite ocean color retrievals.
    Scott JP; Crooke S; Cetinić I; Del Castillo CE; Gentemann CL
    Opt Express; 2020 Feb; 28(3):4274-4285. PubMed ID: 32122083
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sensitivity in reflectance attributed to phytoplankton cell size: forward and inverse modelling approaches.
    Evers-King H; Bernard S; Robertson Lain L; Probyn TA
    Opt Express; 2014 May; 22(10):11536-51. PubMed ID: 24921275
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.