These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 29434395)

  • 1. Co-utilization of Crude Glycerol and Biowastes for Producing Polyhydroxyalkanoates.
    Ray S; Sharma R; Kalia VC
    Indian J Microbiol; 2018 Mar; 58(1):33-38. PubMed ID: 29434395
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Production of co-polymers of polyhydroxyalkanoates by regulating the hydrolysis of biowastes.
    Kumar P; Ray S; Kalia VC
    Bioresour Technol; 2016 Jan; 200():413-9. PubMed ID: 26512866
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Co-metabolism of substrates by Bacillus thuringiensis regulates polyhydroxyalkanoate co-polymer composition.
    Ray S; Kalia VC
    Bioresour Technol; 2017 Jan; 224():743-747. PubMed ID: 27914782
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Co-digestion of Biowastes to Enhance Biological Hydrogen Process by Defined Mixed Bacterial Cultures.
    Patel SKS; Ray S; Prakash J; Wee JH; Kim SY; Lee JK; Kalia VC
    Indian J Microbiol; 2019 Jun; 59(2):154-160. PubMed ID: 31031429
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bioconversion of crude glycerol to polyhydroxyalkanoate by Bacillus thuringiensis under non-limiting nitrogen conditions.
    Kumar P; Ray S; Patel SK; Lee JK; Kalia VC
    Int J Biol Macromol; 2015; 78():9-16. PubMed ID: 25840150
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dark-Fermentative Biological Hydrogen Production from Mixed Biowastes Using Defined Mixed Cultures.
    Patel SKS; Lee JK; Kalia VC
    Indian J Microbiol; 2017 Jun; 57(2):171-176. PubMed ID: 28611494
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Integrative Approach for Producing Hydrogen and Polyhydroxyalkanoate from Mixed Wastes of Biological Origin.
    Patel SK; Lee JK; Kalia VC
    Indian J Microbiol; 2016 Sep; 56(3):293-300. PubMed ID: 27407293
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ecobiotechnological Approach for Exploiting the Abilities of Bacillus to Produce Co-polymer of Polyhydroxyalkanoate.
    Kumar P; Singh M; Mehariya S; Patel SK; Lee JK; Kalia VC
    Indian J Microbiol; 2014 Jun; 54(2):151-7. PubMed ID: 25320415
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dark fermentative bioconversion of glycerol to hydrogen by Bacillus thuringiensis.
    Kumar P; Sharma R; Ray S; Mehariya S; Patel SKS; Lee JK; Kalia VC
    Bioresour Technol; 2015 Apr; 182():383-388. PubMed ID: 25686722
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Substrate strategy optimization for polyhydroxyalkanoates producing culture enrichment from crude glycerol.
    Wen Q; Liu B; Li F; Chen Z
    Bioresour Technol; 2020 Sep; 311():123516. PubMed ID: 32428849
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Production of Polyhydroxyalkanoate Co-polymer by Bacillus thuringiensis.
    Singh M; Kumar P; Patel SK; Kalia VC
    Indian J Microbiol; 2013 Mar; 53(1):77-83. PubMed ID: 24426082
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biosynthesis and characterization of polyhydroxyalkanoate from marine Bacillus cereus MCCB 281 utilizing glycerol as carbon source.
    Mohandas SP; Balan L; Jayanath G; Anoop BS; Philip R; Cubelio SS; Bright Singh IS
    Int J Biol Macromol; 2018 Nov; 119():380-392. PubMed ID: 30026096
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Polyhydroxyalkanoate Production and Degradation Patterns in
    Ray S; Kalia VC
    Indian J Microbiol; 2017 Dec; 57(4):387-392. PubMed ID: 29151638
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Polyhydroxyalkanoate (PHA) Synthesis by Glycerol-based Mixed Culture and Its Relation with Oxygen Uptake Rate (OUR)].
    Liu D; Zhang XT; Zhang DJ; Zeng SW; Lu PL
    Huan Jing Ke Xue; 2016 Sep; 37(9):3518-3523. PubMed ID: 29964788
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Crude glycerol as feedstock for polyhydroxyalkanoates production by mixed microbial cultures.
    Moita R; Freches A; Lemos PC
    Water Res; 2014 Jul; 58():9-20. PubMed ID: 24731872
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Polyhydroxyalkanoates (PHA) production in bacterial co-culture using glucose and volatile fatty acids as carbon source.
    Munir S; Jamil N
    J Basic Microbiol; 2018 Mar; 58(3):247-254. PubMed ID: 29314110
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biohydrogen production by co-fermentation of crude glycerol and apple pomace hydrolysate using co-culture of Enterobacter aerogenes and Clostridium butyricum.
    Pachapur VL; Sarma SJ; Brar SK; Le Bihan Y; Buelna G; Verma M
    Bioresour Technol; 2015 Oct; 193():297-306. PubMed ID: 26142996
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of medium-chain-length polyhydroxyalkanoate biosynthesis by Pseudomonas mosselii TO7 using crude glycerol.
    Liu MH; Chen YJ; Lee CY
    Biosci Biotechnol Biochem; 2018 Mar; 82(3):532-539. PubMed ID: 29338575
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Scale Up Studies for Polyhydroxyalkanoate Production by a
    Wagle AR; Dixit YM; Vakil BV
    Indian J Microbiol; 2019 Sep; 59(3):383-386. PubMed ID: 31388219
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Medium chain length polyhydroxyalkanoates consisting primarily of unsaturated 3-hydroxy-5-cis-dodecanoate synthesized by newly isolated bacteria using crude glycerol.
    Muangwong A; Boontip T; Pachimsawat J; Napathorn SC
    Microb Cell Fact; 2016 Mar; 15():55. PubMed ID: 26988857
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.