These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 29435094)

  • 21. Target-specific novel molecules with their recipe: Incorporating synthesizability in the design process.
    Krishnan SR; Bung N; Srinivasan R; Roy A
    J Mol Graph Model; 2024 Jun; 129():108734. PubMed ID: 38442440
    [TBL] [Abstract][Full Text] [Related]  

  • 22.
    Domenico A; Nicola G; Daniela T; Fulvio C; Nicola A; Orazio N
    J Chem Inf Model; 2020 Oct; 60(10):4582-4593. PubMed ID: 32845150
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Generative Adversarial Networks for De Novo Molecular Design.
    Lee YJ; Kahng H; Kim SB
    Mol Inform; 2021 Oct; 40(10):e2100045. PubMed ID: 34622551
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Comparison of structure- and ligand-based scoring functions for deep generative models: a GPCR case study.
    Thomas M; Smith RT; O'Boyle NM; de Graaf C; Bender A
    J Cheminform; 2021 May; 13(1):39. PubMed ID: 33985583
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Optimizing blood-brain barrier permeation through deep reinforcement learning for de novo drug design.
    Pereira T; Abbasi M; Oliveira JL; Ribeiro B; Arrais J
    Bioinformatics; 2021 Jul; 37(Suppl_1):i84-i92. PubMed ID: 34252946
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A new approach to knowledge-based design of recurrent neural networks.
    Kolman E; Margaliot M
    IEEE Trans Neural Netw; 2008 Aug; 19(8):1389-401. PubMed ID: 18701369
    [TBL] [Abstract][Full Text] [Related]  

  • 27. VGAE-MCTS: A New Molecular Generative Model Combining the Variational Graph Auto-Encoder and Monte Carlo Tree Search.
    Iwata H; Nakai T; Koyama T; Matsumoto S; Kojima R; Okuno Y
    J Chem Inf Model; 2023 Dec; 63(23):7392-7400. PubMed ID: 37993764
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Designing Interpretable Recurrent Neural Networks for Video Reconstruction via Deep Unfolding.
    Luong HV; Joukovsky B; Deligiannis N
    IEEE Trans Image Process; 2021; 30():4099-4113. PubMed ID: 33798083
    [TBL] [Abstract][Full Text] [Related]  

  • 29. DeepQMC: An open-source software suite for variational optimization of deep-learning molecular wave functions.
    Schätzle Z; Szabó PB; Mezera M; Hermann J; Noé F
    J Chem Phys; 2023 Sep; 159(9):. PubMed ID: 37671962
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Extracting chemical-protein relations using attention-based neural networks.
    Liu S; Shen F; Komandur Elayavilli R; Wang Y; Rastegar-Mojarad M; Chaudhary V; Liu H
    Database (Oxford); 2018 Jan; 2018():. PubMed ID: 30295724
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Conformer-RL: A deep reinforcement learning library for conformer generation.
    Jiang R; Gogineni T; Kammeraad J; He Y; Tewari A; Zimmerman PM
    J Comput Chem; 2022 Oct; 43(27):1880-1886. PubMed ID: 36000759
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Status and Prospects of Research on Deep Learning-based De Novo Generation of Drug Molecules.
    Shi H; Wang Z; Zhou L; Xu Z; Xie L; Kong R; Chang S
    Curr Comput Aided Drug Des; 2024 Feb; ():. PubMed ID: 38321907
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Molecule Sequence Generation with Rebalanced Variational Autoencoder Loss.
    Yan C; Yang J; Ma H; Wang S; Huang J
    J Comput Biol; 2023 Jan; 30(1):82-94. PubMed ID: 35972373
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Perfect prosthetic heart valve: generative design with machine learning, modeling, and optimization.
    Danilov VV; Klyshnikov KY; Onishenko PS; Proutski A; Gankin Y; Melgani F; Ovcharenko EA
    Front Bioeng Biotechnol; 2023; 11():1238130. PubMed ID: 37781537
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Generative Recurrent Networks for De Novo Drug Design.
    Gupta A; Müller AT; Huisman BJH; Fuchs JA; Schneider P; Schneider G
    Mol Inform; 2018 Jan; 37(1-2):. PubMed ID: 29095571
    [TBL] [Abstract][Full Text] [Related]  

  • 36. UnCorrupt SMILES: a novel approach to de novo design.
    Schoenmaker L; Béquignon OJM; Jespers W; van Westen GJP
    J Cheminform; 2023 Feb; 15(1):22. PubMed ID: 36788579
    [TBL] [Abstract][Full Text] [Related]  

  • 37. De novo drug design based on Stack-RNN with multi-objective reward-weighted sum and reinforcement learning.
    Hu P; Zou J; Yu J; Shi S
    J Mol Model; 2023 Mar; 29(4):121. PubMed ID: 36991180
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Guidelines for Recurrent Neural Network Transfer Learning-Based Molecular Generation of Focused Libraries.
    Amabilino S; Pogány P; Pickett SD; Green DVS
    J Chem Inf Model; 2020 Dec; 60(12):5699-5713. PubMed ID: 32659085
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Enabling grand-canonical Monte Carlo: extending the flexibility of GROMACS through the GromPy python interface module.
    Pool R; Heringa J; Hoefling M; Schulz R; Smith JC; Feenstra KA
    J Comput Chem; 2012 May; 33(12):1207-14. PubMed ID: 22370965
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A graph-based genetic algorithm and generative model/Monte Carlo tree search for the exploration of chemical space.
    Jensen JH
    Chem Sci; 2019 Mar; 10(12):3567-3572. PubMed ID: 30996948
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.