These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 29435140)

  • 1. Triplications of human chromosome 21 orthologous regions in mice result in expansion of megakaryocyte-erythroid progenitors and reduction of granulocyte-macrophage progenitors.
    Liu C; Yu T; Xing Z; Jiang X; Li Y; Pao A; Mu J; Wallace PK; Stoica G; Bakin AV; Yu YE
    Oncotarget; 2018 Jan; 9(4):4773-4786. PubMed ID: 29435140
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Human chromosome 21 orthologous region on mouse chromosome 17 is a major determinant of Down syndrome-related developmental cognitive deficits.
    Zhang L; Meng K; Jiang X; Liu C; Pao A; Belichenko PV; Kleschevnikov AM; Josselyn S; Liang P; Ye P; Mobley WC; Yu YE
    Hum Mol Genet; 2014 Feb; 23(3):578-89. PubMed ID: 24041763
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of individual segmental trisomies of human chromosome 21 syntenic regions on hippocampal long-term potentiation and cognitive behaviors in mice.
    Yu T; Liu C; Belichenko P; Clapcote SJ; Li S; Pao A; Kleschevnikov A; Bechard AR; Asrar S; Chen R; Fan N; Zhou Z; Jia Z; Chen C; Roder JC; Liu B; Baldini A; Mobley WC; Yu YE
    Brain Res; 2010 Dec; 1366():162-71. PubMed ID: 20932954
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dissecting the contribution of human chromosome 21 syntenic regions to recognition memory processes in adult and aged mouse models of Down syndrome.
    Canonica T; Kidd EJ; Gibbins D; Lana-Elola E; Fisher EMC; Tybulewicz VLJ; Good M
    Front Behav Neurosci; 2024; 18():1428146. PubMed ID: 39050700
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Compromised femoral and lumbovertebral bone in the Dp(16)1Yey Down syndrome mouse model.
    Lamantia J; Sloan K; Wallace JM; Roper RJ
    Bone; 2024 Apr; 181():117046. PubMed ID: 38336158
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Genetic analysis of Down syndrome-associated heart defects in mice.
    Liu C; Morishima M; Yu T; Matsui S; Zhang L; Fu D; Pao A; Costa AC; Gardiner KJ; Cowell JK; Nowak NJ; Parmacek MS; Liang P; Baldini A; Yu YE
    Hum Genet; 2011 Nov; 130(5):623-32. PubMed ID: 21442329
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Spermatogonial depletion and a spermatogenesis defect in the Dp(16)1Yey mouse model of Down syndrome.
    Dard R; Tutunaru A; Bouassida M; Balde Camara A; Parizot E; Kassis N; Fortemps J; Cierniewski C; Racine C; Clemente ND; Vialard F; Janel N
    Reproduction; 2023 Dec; ():. PubMed ID: 38063330
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Genetic dissection of the Down syndrome critical region.
    Jiang X; Liu C; Yu T; Zhang L; Meng K; Xing Z; Belichenko PV; Kleschevnikov AM; Pao A; Peresie J; Wie S; Mobley WC; Yu YE
    Hum Mol Genet; 2015 Nov; 24(22):6540-51. PubMed ID: 26374847
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mouse models of Down syndrome: gene content and consequences.
    Gupta M; Dhanasekaran AR; Gardiner KJ
    Mamm Genome; 2016 Dec; 27(11-12):538-555. PubMed ID: 27538963
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Perturbation of fetal hematopoiesis in a mouse model of Down syndrome's transient myeloproliferative disorder.
    Birger Y; Goldberg L; Chlon TM; Goldenson B; Muler I; Schiby G; Jacob-Hirsch J; Rechavi G; Crispino JD; Izraeli S
    Blood; 2013 Aug; 122(6):988-98. PubMed ID: 23719302
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Perturbed hematopoiesis in the Tc1 mouse model of Down syndrome.
    Alford KA; Slender A; Vanes L; Li Z; Fisher EM; Nizetic D; Orkin SH; Roberts I; Tybulewicz VL
    Blood; 2010 Apr; 115(14):2928-37. PubMed ID: 20154221
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The genetic background and application of Down syndrome mouse models.
    Meng XW; Wang J; Ma QW
    Yi Chuan; 2018 Mar; 40(3):207-217. PubMed ID: 29576544
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Engineered chromosome-based genetic mapping establishes a 3.7 Mb critical genomic region for Down syndrome-associated heart defects in mice.
    Liu C; Morishima M; Jiang X; Yu T; Meng K; Ray D; Pao A; Ye P; Parmacek MS; Yu YE
    Hum Genet; 2014 Jun; 133(6):743-53. PubMed ID: 24362460
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Coat Color-Facilitated Efficient Generation and Analysis of a Mouse Model of Down Syndrome Triplicated for All Human Chromosome 21 Orthologous Regions.
    Li Y; Xing Z; Yu T; Pao A; Daadi M; Yu YE
    Genes (Basel); 2021 Aug; 12(8):. PubMed ID: 34440389
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Early lineage priming by trisomy of Erg leads to myeloproliferation in a Down syndrome model.
    Ng AP; Hu Y; Metcalf D; Hyland CD; Ierino H; Phipson B; Wu D; Baldwin TM; Kauppi M; Kiu H; Di Rago L; Hilton DJ; Smyth GK; Alexander WS
    PLoS Genet; 2015 May; 11(5):e1005211. PubMed ID: 25973911
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ultrasonic vocalization phenotypes in the Ts65Dn and Dp(16)1Yey mouse models of Down syndrome.
    Glass TJ; Lenell C; Fisher EH; Yang Q; Connor NP
    Physiol Behav; 2023 Nov; 271():114323. PubMed ID: 37573959
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Surveying the Down syndrome mouse model resource identifies critical regions responsible for chronic otitis media.
    Bhutta MF; Cheeseman MT; Herault Y; Yu YE; Brown SD
    Mamm Genome; 2013 Dec; 24(11-12):439-45. PubMed ID: 24068166
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Overlapping trisomies for human chromosome 21 orthologs produce similar effects on skull and brain morphology of Dp(16)1Yey and Ts65Dn mice.
    Starbuck JM; Dutka T; Ratliff TS; Reeves RH; Richtsmeier JT
    Am J Med Genet A; 2014 Aug; 164A(8):1981-1990. PubMed ID: 24788405
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sex differences in protein expression in the mouse brain and their perturbations in a model of Down syndrome.
    Block A; Ahmed MM; Dhanasekaran AR; Tong S; Gardiner KJ
    Biol Sex Differ; 2015; 6():24. PubMed ID: 26557979
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pluripotent stem cells reveal erythroid-specific activities of the GATA1 N-terminus.
    Byrska-Bishop M; VanDorn D; Campbell AE; Betensky M; Arca PR; Yao Y; Gadue P; Costa FF; Nemiroff RL; Blobel GA; French DL; Hardison RC; Weiss MJ; Chou ST
    J Clin Invest; 2015 Mar; 125(3):993-1005. PubMed ID: 25621499
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.